...

aplicação da metodologia tambor-pulmão-corda

by user

on
Category: Documents
6

views

Report

Comments

Transcript

aplicação da metodologia tambor-pulmão-corda
UNIVERSIDADE FEDERAL DA BAHIA
ESCOLA DE ADMINISTRAÇÃO
NÚCLEO DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO
ALMIR ANTONIO CUNHA DE SOUZA
APLICAÇÃO DA METODOLOGIA
TAMBOR-PULMÃO-CORDA (TPC) COM
SUPERMERCADO NA GESTÃO DE
MANUFATURA DE ELETRODOS DE
GRAFITE DAS UNIDADES DE CANDEIAS,
E MONTERREY DA GRAFTECH
INTERNATIONAL Ltd.
Salvador
2006
ALMIR ANTONIO CUNHA DE SOUZA
APLICAÇÃO DA METODOLOGIA
TAMBOR-PULMÃO-CORDA (TPC) COM
SUPERMERCADO NA GESTÃO DE
MANUFATURA DE ELETRODOS DE
GRAFITE DAS UNIDADES DE CANDEIAS,
E MONTERREY DA GRAFTECH
INTERNATIONAL Ltd.
Dissertação apresentada ao curso de Mestrado
Profissional da Escola de Administração da
Universidade Federal da Bahia, como
requisito parcial para obtenção do grau de
Mestre Profissional em Administração.
Orientador: Prof. Dr. Francisco Lima da Cruz Teixeira
Salvador
2006
Escola de Administração - UFBA
S729 Souza, Almir Antonio Cunha de.
Aplicação da metodologia Tambor – Pulmão – Corda (TPC) com
supermercado na gestão de manufatura de eletrodos de grafite das
unidades de Candeias e Monterrey da Graftech International Ltd. / Almir
Antonio Cunha de Souza – 2005.
112 f.
Orientador: Prof. Dr. Francisco Lima Cruz Teixeira.
Dissertação (mestrado profissional) – Universidade Federal da Bahia.
Escola de Administração, 2005.
1. Administração da produção. 2. Teoria das restrições
(Administração). I. Teixeira, Francisco Lima Cruz. II. Universidade
Federal da Bahia. Escola de Administração. III. Título.
CDD – 658.5
UNIVERSIDADE FEDERAL DA BAHIA
ESCOLA DE ADMINISTRAÇÃO
NÚCLEO DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO
ALMIR ANTONIO CUNHA DE SOUZA
APLICAÇÃO DA METODOLOGIA TAMBOR-PULMÃO-CORDA
(TPC) COM SUPERMERCADO NA GESTÃO DE MANUFATURA DE
ELETRODOS DE GRAFITE DAS UNIDADES DE CANDEIAS E
MONTERREY DA GRAFTECH INTERNATIONAL LTD.
Dissertação apresentada ao curso de Mestrado
Profissional da Escola de Administração da
Universidade Federal da Bahia, como
requisito parcial para obtenção do grau de
Mestre Profissional em Administração.
Data de aprovação: 10 de Fevereiro de 2006
BANCA EXAMINADORA:
Prof. Dr. José Amaro de Oliveira
Universidade Federal da Bahia
Prof. Dr. Carlos Artur Mattos Teixeira Cavalcante
Universidade Federal da Bahia
Prof. Dr. Francisco Lima da Cruz Teixeira
Universidade Federal da Bahia
A minha esposa, Ana Regina, pelo seu
amor e constante incentivo, e a meus
filhos, Luiza e Eduardo, que
colaboraram com paciência e cobraram
a conclusão deste trabalho em
detrimento de horas de convívio e
lazer.
AGRADECIMENTOS
Ao prof. Dr. Francisco Lima da Cruz Teixeira, orientador deste trabalho, por suas
contribuições.
À Graftech, por incentivar e estimular o meu desejo de aprender, quer me colocando
em contato com pessoas de larga experiência e conhecimento, quer me apresentando novos
desafios.
A todos os colegas e consultores que ajudaram e me assistiram nesse aprendizado e
conhecimento das Teorias de Gestão de Produção, em especial a Teoria das Restrições.
A todos os colegas e professores, pela descontração e seriedade com que trocaram
experiências e conhecimento ao longo dos quase dois anos de curso.
A Maria José Bacelar, por ter consolidado este trabalho, trazendo-o para o estilo das
normas.
A todas as pessoas que, de algum modo, participaram deste trabalho, quer com
discussões, orientações, sugestões, dados ou informações.
RESUMO
O Gerenciamento das Restrições (GR) parte do pressuposto de que a meta de qualquer
empresa é ganhar mais dinheiro no presente, bem como no futuro. A Teoria das Restrições é
um conjunto de soluções embasadas na Teoria do Caos, que busca o desempenho global do
sistema, pela gestão de seus poucos recursos críticos. Esta teoria é aplicada a qualquer
empresa, já que estas, por natureza, têm característica sistêmica. O objetivo deste trabalho é
avaliar a implantação da metodologia Tambor-Pulmão-Corda com Supermercado, resultante
da Teoria das Restrições, na gestão do planejamento e programação de produção, nas
unidades de fabricação de eletrodos de grafite da Graftech International Ltd., situadas em
Candeias e Monterrey, no período de 2001 a 2004. Projeto piloto, aplicando esta metodologia,
foi desenvolvido por um grupo de técnicos da Empresa e, posteriormente, foi aprovado para
ser implantado nas demais unidades do grupo. A estratégia de pesquisa adotada foi o estudo
de casos. Como resultados da implantação do modelo TPC com Supermercado, temos uma
linguagem uniforme de planejamento e programação de produção entre as unidades estudadas
e a Corporação, tendência de redução do nível de inventário e o entendimento comum de
como gerir as restrições físicas a partir das cinco etapas da Teoria das Restrições: Identificar,
explorar, subordinar, elevar e identificar a nova restrição. Por fim, chegamos à conclusão de
que o modelo proposto não pode ser dado como implantado em nenhuma das duas unidades
estudadas, e que as maiores dificuldades encontradas estão atreladas às restrições não físicas,
principalmente no que se refere às políticas de vendas/marketing, contabilidade de custos e
busca dos resultados de curto prazo.
PALAVRAS-CHAVE: Administração da produção. Teoria das restrições (Administração).
ABSTRACT
The Management Of Constraint premises that the main goal of any company is to make more
money now as well as in the future. The Theory Of Constraints is a set of solutions based on
the Theory Of Chaos, that aims the global accomplishment of the system, by managing its
little critical resources. This theory can be applied in any company, since by nature, they have
systemic characteristics. The purpose of this work is to evaluate the implementation of the
“Drum-Buffer-Rope with Replenishment” methodology, resulted from the Theory Of
Constraint in the management of production planning and scheduling at the plants of graphite
electrodes of Graftech International Ltd., sited in Candeias and Monterrey, from 2001 to
2004. The pilot applied in this method was developed by a group of company’s technicians,
and posterior approved to be implemented in the rest of the group’s plants. These case studies
for implementation of this method in the plants of Candeias and Monterrey constitute the
purpose of our essay. As results of the implementation of DBR model with replenishment, we
have an uniform language of production planning and scheduling among the studied plants
and the Corporation; tendency of reduction of the inventory level; and the common
understanding of how to manage the physical constraints from the five-step process of the
Theory Of Constraint: identify, exploit, subordinate, elevate and start over by finding the new
constraint. Finally, we come to a conclusion that the suggested model can not be considered
as implemented in none of the two studied sites, and the biggest difficulties found are related
to non-physical constraints, mainly when we refer to the policies of marketing/sales, cost
accounting and the search of short-terms results.
KEY WORDS: Production Administration. Theory Of Constraints (Administration).
LISTA DE ILUSTRAÇÕES
DIAGRAMAS
1 - FLUXO DE PRODUTO PROPOSTO PARA CLARKSVILLE
78
2-
104
CONFLITO PARA ESTABELECIMENTO DAS ORDENS DE PRODUÇÃO
FIGURAS
1 - CLARKSVILLE & COLUMBIA LEAD-TIME
67
2 - PROPOSTA DE FLUXO COM TPC
68
3 - CÁLCULO DA EFICIÊNCIA DOS EQUIPAMENTOS DA MANUFATURA
73
4 - ANÁLISE DOS TEMPOS DOS PULMÕES
81
FOTOS
1 - ELETRODOS DE GRAFITA
64
2 - PINOS DE CONEXÃO OU NIPPLES
64
GRÁFICOS
1 - SUMÁRIO DO MAPA DE PROCESSOS
2 - INVENTÁRIOS X EMBARQUES DE CLARKSVILLE – JUL./OUT. 1999
3 - GRAFITAÇÃO – IDENTIFICAÇÃO DOS EQUIPAMENTOS CRÍTICOS – CAPACIDADE
EFETIVA DOS EQUIPAMENTOS
66
66
72
4 - GRAFITAÇÃO – CAUSAS DAS PERDAS DE PRODUTIVIDADE GRÁFICO PARETO – TEMPO
PERDIDO
5 - EVOLUÇÃO DO ÍNDICE MEE NO MME – PERÍODO: JUN. 2002/MAR. 2005
6 - EVOLUÇÃO DA PRODUÇÃO E REFUGO DO MME – ELETRODOS E CATODOS
72
87
88
8
QUADROS
1 - CAPACIDADE (EQUIVALENTE AO PESO USINADO) POR DEPARTAMENTO
89
2 - PRODUÇÃO E VENDAS POR DEPARTAMENTO
89
3 - PRODUÇÃO DO RRE X VENDAS TOTAIS
98
4 - CAPACIDADE (EQUIVALENTE AO PESO USINADO) POR DEPARTAMENTO
99
TABELAS
1 – ANÁLISE DE CAPACIDADE PROTETIVA
90
2 – INDICADORES
94
DE PERFORMANCE DA PLANTA DE CANDEIAS
3 - ANÁLISE DE CAPACIDADE PROTETIVA EM RELAÇÃO A RESTRIÇÃO (MONTERREY)
99
4 - ANÁLISE DE CAPACIDADE PROTETIVA – IMPACTO DE QUEBRA INESPERADA
100
5 – INDICADORES DE PERFORMANCE DA PLANTA DE MONTERREY
102
LISTA DE ABREVIATURAS E SIGLAS
AJP -
Associação Japonesa de Padrões
APICS -
American Production and Inventory Control Society (Sociedade Americana de
Controle de Produção e Inventário)
APR -
Árvore de Pré-requisitos
APS -
Advanced Planning and Scheduling (Sistema Avançado de Planejamento e
Programação)
ARA -
Árvore de Realidade Atual
ARF -
Árvore de Realidade Futura
AT -
Árvore de Transição
CEP -
Controle Estatístico de Processo
CQ -
Controle de Qualidade
CQT -
Controle de Qualidade Total
DDN -
Diagrama de Dispersão de Nuvens
GP -
Gestão de Produção
EPA -
Equivalente ao Peso de Produto Acabado
ERP -
Planejamento de Recursos da Organização
GQT -
Gerenciamento da Qualidade Total
GR -
Gerenciamento das Restrições
JIT -
Just-in-time
MEE -
Manufacturing Equipment Eficiency (Eficiência de Equipamento da Manufatura)
MME -
Moagem, Mistura e Extrusão
MRP -
Planejamento das Necessidades de Materiais
MRP II -
Planejamento dos Recursos de Manufatura
MTO -
Make to order (Fabricado sob Pedido)
MTS -
Make to stock (Fabricado para Estoque)
MUS$
Milhares de dólares
OPT -
Optimized Production Technology (Tecnologia de Produção Otimizada)
PEPS -
Primeiro que entra é o primeiro que sai
RRC -
Recursos Restritivos de Capacidade
RRE -
Recurso Restritivo Estratégico
10
SMED -
Single-Minute Exchange Of Die (Troca de Matriz no Minuto-Simples)
TOC -
Teoria das Restrições
TPC -
Tambor, Pulmão e Corda
TPM -
Manutenção Produtiva Total
UCEJ -
União dos Cientistas e Engenheiros Japoneses
WIP -
Work-in-process ( Estoque de produto em processo )
SUMÁRIO
INTRODUÇÃO
13
CAPÍTULO 1
GESTÃO DA MANUFATURA
1.1
MÉTODOS DE PLANEJAMENTO E CONTROLE DA PRODUÇÃO
20
1.2
MÉTODO TRADICIONAL DO GERENCIAMENTO DA PRODUÇÃO
21
1.3
1.4
MÉTODO DE PROGRAMAÇÃO DA PRODUÇÃO MRP’s
MÉTODO JUST IN TIME (JIT)
25
29
1.4.1
1.5
Kanban – Ferramenta Utilizada para Operar o JIT
MÉTODO DO GERENCIAMENTO DAS RESTRIÇÕES
34
1.5.1
1.5.1.1
1.5.1.2
1.5.2
Processo de Aprimoramento Contínuo
Processo de Aprimoramento Contínuo para Restrições Não-Físicas
Processo de Aprimoramento Contínuo para Restrições Físicas
Metodologia Tambor-Pulmão-Corda com Supermercado & Gerenciamento de
Pulmão
Classificação dos tipos de fluxo de produção segundo a TOC
COMPARAÇÃO ENTRE OS MÉTODOS TRADICIONAL, MRP’s, JIT e GR
1.5.3
1.6
CAPÍTULO 2
METODOLOGIA
20
39
42
43
45
47
51
55
58
CAPÍTULO 3
FABRICAÇÃO DE ELETRODOS DE GRAFITE - PROCESSO PRODUTIVO E
MODELO PILOTO DESENVOLVIDO PARA APLICAÇÃO NAS PLANTAS DA GRAFTECH
INTERNATIONAL Ltd.
62
3.1
PROCESSO PRODUTIVO DE ELETRODOS DE GRAFITE
62
3.2
MÉTODO TAMBOR-PULMÃO-CORDA COM GERENCIAMENTO DE
PULMÕES E SUPERMERCADO DESENVOLVIDO PARA APLICAÇÃO NAS
PLANTAS DA GRAFTECH
64
3.3
PROJETO PILOTO
3.3.1
Identificação da restrição
3.3.2
3.3.3
3.4
Exploração da restrição
Subordinação de todos os recursos à restrição
ESTUDO DA DEMANDA
3.5
DIAGRAMA DE FLUXO DE PRODUTO PROPOSTO COM BASE NA
METODOLOGIA TPC COM SUPERMERCADO
3.5.1
3.6
Cálculo do Target do Supermercado
GERENCIAMENTO DE PULMÃO
65
70
71
73
74
76
79
80
12
CAPÍTULO 4
ESTUDO DE CASO DAS IMPLEMENTAÇÕES DO MÉTODO TPC COM
GERENCIAMENTO DE PULMÕES E SUPERMERCADO NAS PLANTAS DE
CANDEIAS E MONTERREY
83
4.1
APLICAÇÃO DO MODELO TPC NA PLANTA DE CANDEIAS
83
4.1.1
Problemas na Implementação
84
4.1.2
4.2
Indicadores de Performance
APLICAÇÃO DO MODELO TPC NA PLANTA DE MONTERREY
93
4.2.1
Problemas na Implementação
4.2.2
Indicadores de Performance
96
97
101
CONSIDERAÇÕES FINAIS
103
REFERÊNCIAS
107
ANEXOS
109
INTRODUÇÃO
Diga-me como me medes e eu lhe direi como irei me comportar.
Se você me avaliar de uma maneira ilógica [...] Não reclame
sobre comportamentos ilógicos.1
(GOLDRATT, 1990, p.26, tradução nossa)
Como parte do projeto de Otimização Global da Cadeia de Suprimentos (Supply
Chain) da Graftech International Ltd., um time foi formado para avaliar e desenvolver um
processo de tomada de decisão que utilizasse os recursos de forma mais eficaz para atender ao
mercado e maximizasse o retorno sobre o capital investido. O objetivo era determinar como a
demanda poderia ser melhor alocada entre as plantas no intuito de ajudar a maximizar a
performance financeira da empresa.
De forma a estabelecer uma visão clara do projeto definiu-se Cadeia de Suprimentos
como um sistema de atividades e práticas que visam melhorar a performance da empresa
desde o gerenciamento de pedidos e fornecimento da matéria-prima, transformação e fabricação
dos produtos acabados até a distribuição do produto final aos clientes e a geração de caixa.
As atividades desse time envolveram o mapeamento de todo o processo existente e o
desenvolvimento de um modelo futuro de planejamento global da Cadeia de Suprimentos. No
teste desse modelo, foram utilizados softwares específicos de Sistemas Avançados de
Planejamento e Programação existentes no mercado. Esse modelo levou em consideração as
seguintes características do negócio: capacidade operacional de cada uma das Plantas; mix de
produtos produzidos; clientes e fornecedores; vendas para mercado doméstico e exportação;
1
“Tell me how you measure me, and I will tell you how I will behave. If you measure me in an illogical way [...]
do not complain about illogical behavior.”
14
condições de vendas e compras; transferências intercompanhia; custos logísticos; impostos,
entre outras.
O propósito do modelo foi experimentar o conceito de alocação otimizada da demanda
da cadeia de suprimentos global. Este novo modelo exigia que os processos fossem
redesenhados para suportá-lo e que ferramentas tecnológicas fossem implementadas de modo
uniforme e sistêmico, englobando a maioria das atividades da empresa.
Como resultado do trabalho acima, quatro times foram formados para suportar o
plano, cada um com a responsabilidade de rever um subsistema da Cadeia de Suprimentos,
como veremos a seguir:
- Time de Gestão de Produção (GP) – responsável pelo desenvolvimento do sistema
global de transformação das matérias-primas até a fabricação dos produtos acabados;
- Time de cotação e faturamento – responsável pelo desenvolvimento do sistema de
distribuição do produto final até o recebimento do dinheiro, ou seja, a geração do caixa;
- Time de compras – responsável pelo desenvolvimento do sistema global de pedidos e
fornecimento de matérias-primas até seu pagamento;
- Time de marketing/vendas – responsável por propor o sistema de gerenciamento de
demanda e conhecimento de clientes.
O trabalho realizado pelo time de Gestão de Produção, constituído pelo autor desta
dissertação, um colega americano, um italiano, um espanhol, um sul-africano e um consultor
americano, constituiu-se em objeto de estudo desta pesquisa.
Um dos problemas evidenciados no desenvolvimento do modelo em foco foram as
diferentes metodologias utilizadas pelas plantas para programar a produção, definir os níveis
de inventários, calcular os lead-times de processamento, além dos diferentes índices de
performance existentes em cada uma delas.
O time de Gestão de Produção teve como meta definir e implementar técnicas de
manufatura de classe mundial que criasse uma solução em linha com a meta da companhia,
atendendo às seguintes necessidades: prover uma lógica de programação que permitisse uma
melhoria contínua de todo o processo, mundialmente; garantir maior velocidade no processo
produtivo, mantendo os atuais parâmetros técnicos de processo; reduzir o inventário total,
permitindo uma maior geração de caixa; e melhorar os índices de produtos entregues ao
cliente na data acordada, resultando em aumento da lucratividade.
15
Como resultado do trabalho do time, foi definida a implementação da metodologia
Tambor, Pulmão e Corda (TPC) com Supermercado em todas as unidades do grupo. Esta
metodologia, resultante da Teoria das Restrições2 aplicada na manufatura, foi desenvolvida
por Eliyahu M. Goldratt (1989, 1997). O Supermercado é recomendado pelos autores nos
casos em que o tempo de manufatura do produto é maior do que o tempo que o cliente está
disposto a esperar pelo mesmo, o que é fato na indústria de eletrodo de grafite nos dias atuais.
A Teria das Restrições parte do pressuposto de que a meta de qualquer empresa é fazer
mais dinheiro hoje e sempre. Uma empresa pode ser equiparada a um sistema e, como tal,
deve ter, pelo menos, uma restrição. Caso contrário, poderia ter um nível de vendas e de lucro
infinito. Uma restrição é qualquer obstáculo que limita o sistema de melhoria do desempenho
em direção à meta de ganhar dinheiro. Assim, as empresas podem melhorar seu desempenho
quando identificam e otimizam a utilização da restrição e/ou elevam a sua capacidade. Como
conseqüência, aumentam as vendas, o lucro e o retorno sobre o investimento.
O lócus deste estudo é a Graftech International Ltd., maior fabricante mundial de
eletrodos de grafite, com unidades de produção em 7 países e clientes em mais de 80. Os
eletrodos de grafite e seus respectivos niples3 são produtos essenciais para a produção de aço
elétrico4 e de vários outros metais ferrosos e não ferrosos. A Graftech ainda possui várias
outras linhas de negócios relacionados à produção de produtos de grafite sintético, grafite
natural e carbono.
A partir de 2001, a Graftech tomou a decisão de encerrar as operações de fabricação
de eletrodos de grafite na Itália e, posteriormente, nos Estados Unidos. Como conseqüência,
houve uma queda na capacidade instalada da empresa. No período estudado, de 2001 a 2004,
verificou-se um incremento de demanda e uma contínua exploração e até mesmo elevação de
alguns gargalos por parte da empresa, no sentido de atender aos pedidos em carteira.
As fábricas do Brasil e México têm várias similaridades. Foram construídas entre os
anos de 1967 e 1969, praticamente com o mesmo projeto, inclusive com vários equipamentos
similares. A produção é realizada por batelada em seis etapas de processo bastante definidas.
Cada uma das etapas possui tempos de processamento, tamanhos de lotes e parâmetros de
processos bastante diferentes. Uma característica de processamento da linha de produtos da
empresa é o longo lead-time, da ordem de 60 dias. O processamento se dá em processo
2
3
4
Teoria desenvolvida por Elyahu M. Goldratt (1990), constituída de raciocínios para soluções de
problemas/processo e do estudo das restrições físicas.
Niples – peças de grafite na forma bicônica, utilizadas para conectar os eletrodos de grafite, formando as
colunas de eletrodos utilizadas nos fornos a arco elétrico.
Aço elétrico – aço produzido através do processo que utiliza fornos elétricos a arco.
16
intermitente, fazendo com que, após cada etapa do processo, o material seja mantido em
estoques intermediários. Estas características do processo produtivo é uma realidade em todas
as unidades da empresa, o que permite adotar um modelo de gestão de produção único.
Até o início dos anos 80, as plantas aplicavam técnicas de produção tradicional, ou
seja, produção para estoque, buscando o ganho pela produção em volume de escala, focadas
no ótimo local, na busca de recordes de produção por departamento, voltadas para o
atendimento de uma previsão de vendas, e apresentavam índices de refugo instáveis. O nível
de operação era determinado por uma necessidade de reposição de estoques, calculado a partir
de um ponto de reposição e um determinado lote econômico. Estoques eram considerados
como ativos.
A partir de 1986, como reflexo do movimento americano em busca do resgate de sua
posição competitiva no mercado internacional, a Empresa, como parte desse cenário,
entendeu a necessidade de investir nos sistemas de qualidade, dando início à implantação do
Gerenciamento da Qualidade Total. Temos aí os primeiros sinais de questionamento do modo
que operavam as plantas. Inicia-se a aplicação do Controle Estatístico de Processo (CEP) nos
processos críticos, prega-se a melhoria contínua dos processos de planejamento, produção e
serviços. Nesse mesmo período, é questionado o gerenciamento baseado em metas numéricas
e quotas de produção por empregado. Altos inventários passam a ser vistos como risco
potencial de altos índices de refugo. O cliente, tanto interno quanto externo, passa a ser o
foco. Essa fase é influenciada pelos ensinamentos de Deming (1986, p.2, tradução nossa),
com seus 14 pontos bem esclarecidos em Out of the Crisis:
A América de fato continua a perder terreno nos mercados de manufatura e serviços.
A fonte deste problema? Baixa qualidade e altos custos associados aos diversos
produtos e serviços. O meio para corrigir isto? Os Administradores devem aumentar
a qualidade e a produtividade dos sistemas relacionados às pessoas e equipamentos
que eles gerenciam.5
Ainda nesse período, observou-se um movimento muito grande para se quebrar as
barreiras entre áreas e departamentos, ocorrendo um investimento elevado no treinamento de
equipes (teamwork) e grupos de qualidade.
A partir do final dos anos 80, com uma atenção mais voltada para o planejamento da
produção e uma preocupação cada vez maior com a redução dos inventários, inicia-se um
5
“America in fact continues to lose ground in manufacturing and sevices markets. The source of the problem?
Low quality and high costs associated with many products and services. The way to correct it? Managers must
increase the quality and productivity of the systems of people and machines that they manage.”
17
processo de utilização de novas ferramentas e softwares no planejamento e programação da
produção, sendo introduzido na empresa o Planejamento das Necessidades de Materiais
(MRP), e como ferramenta de programação o conceito definido como pipeline. Esse conceito
foi divulgado para aplicação em toda a empresa, porém, de fato, limitou-se a aplicação a
algumas plantas, notadamente às plantas dos Estados Unidos e México.
O conceito do pipeline, basicamente, avaliava os estoques, os pedidos em carteira e a
previsão de vendas e, considerando lead-times estabelecidos, explodia a necessidade de
materiais e programava os departamentos para atender aos pedidos, considerando, neste
conceito, as datas de entrega como até o último dia de cada mês. Por isto, normalmente o
lead-time estabelecido era mais longo que o real, de modo a antecipar as chegadas dos produtos.
Nos anos 90, com a difusão do uso do MRP e, em seguida, o Planejamento dos
Recursos de Manufatura (MRP II), e ainda com o aumento da importância do mundo das
finanças nos resultados da empresa, o foco maior para os investimentos nos sistemas voltouse para a área financeira e de contabilidade e custos, ficando a gestão do planejamento da
produção em segundo plano. Nesse período, cada planta decidiu, com relativa independência,
que metodologia aplicar.
Conforme mencionado anteriormente, somente em 2000 decidiu-se desenvolver um
sistema global de gestão da manufatura e de programação da produção a ser aplicado em
todas as unidades.
De modo a obter consistência e entendimento do modelo de planejamento e
programação da produção a ser aplicado em toda a Corporação, durante seu desenvolvimento
teórico, ao longo do ano 2000, projeto piloto foi implantado na planta dos Estados Unidos
pelo time de Gestão de Produção, buscando alinhar conhecimento teórico-prático. Dessa
forma, foi proposta uma metodologia de planejamento e programação da manufatura que
atendesse os objetivos do projeto e, ao mesmo tempo, pudesse diagnosticar e prognosticar
problemas resultantes da implementação da nova metodologia de programação, revisando
conceitos, definindo orientações e provendo soluções adequadas.
Durante o cálculo do Supermercado6 – definição de clientes make to order (MTO) fabricado sob pedido - e make to stock (MTS) - fabricado para estoque –, ficou evidente a
necessidade do trabalho conjunto com o time de Marketing/Vendas. Isto comprovou a
necessidade da “abordagem sistêmica”7 no gerenciamento das restrições (COX III; SPENCER,
6
7
Cálculo da demanda média e discussão do novo papel da previsão de vendas.
Gerenciamento das Restrições (GR) é uma nova abordagem que planeja e controla a produção e venda de
produtos e serviços (COX III; SPENCER, 2002). O GR é usado como sinônimo de TOC (Teoria das Restrições).
18
2002). Como sabemos, a produção é apenas uma das três principais áreas de qualquer
organização, complementadas pelas funções Marketing/Vendas e Finanças/Custos.
Em face do exposto, buscamos verificar se é possível implementar o método TamborPulmão-Corda (TPC) com Supermercado na operação das fábricas de Candeias e Monterrey,
conforme projeto-piloto desenvolvido pela Graftech em 2000 na fábrica de Clarksville.
Deste modo, foi estabelecida a seguinte hipótese explorada nesta dissertação: a
aplicação da metodologia TPC com Supermercado permite vender a capacidade do recurso
restritivo, mantida certa capacidade protetiva 8. Nossa premissa é que, para se implantar o
sistema de ressuprimento baseado nos targets estabelecidos de acordo com a demanda média
dos produtos e definições de Marketing, considerando a restrição dentro das plantas, será
necessário, durante um período de transição e formação do Supermercado, aceitar os pedidos
de clientes de acordo com essas determinações. Caso contrário, dificilmente se estabelecerá o
estoque de Supermercado e se continuará a produzir para atendimento de uma previsão de
vendas.
Os objetivos deste trabalho, expostos a seguir, esclarecem sua importância, à medida
que apresenta elementos teórico-práticos baseados em sistemas de planejamento e controle da
produção associado a uma estratégia de manufatura em uso em diversas organizações, tais
como MRP, just-in-time e, finalmente, Gerenciamento das Restrições:
- Realizar uma análise crítica da implementação da metodologia Tambor-PulmãoCorda com Supermercado nas plantas de Candeias e Monterrey, no período de 2001 a 2004.
- Recomendar medidas adicionais que possam permitir a melhoria contínua do
método.
- Não perdendo a especificidade deste estudo, que envolve a implantação do TPC com
Supermercado desenhado para as plantas de Candeias e Monterrey, esperamos também poder
contribuir com outras empresas, visto que temos a expectativa de que os fenômenos
identificados nesses casos particulares poderão ser replicados em parte ou no todo para
empresas que buscam a implementação de modelos ou políticas aqui abordadas. Especificamente
considerando que as plantas de Candeias e Monterrey juntas representam 35% do grupo,
podemos afirmar a possibilidade dessa replicação pelo menos dentro de todo o grupo.
- Por último, seria bastante gratificante se, ao fim deste estudo crítico do modelo de
gestão de produção desenhado por nós, pudéssemos contribuir retro alimentando, em alguma
dimensão, a teorização desenvolvida.
8
Capacidade Protetiva é o excesso de capacidade que todos os recursos possuem em relação ao Recurso
Restritivo de Capacidade (RRC).
19
Cabe salientar que a definição, treinamento e implementação do modelo proposto de
TPC com Supermercado foi bastante uniforme para as duas plantas citadas, porém, apesar de
se apresentar de modo simples e lógico, com embasamento puramente científico, essa
metodologia envolve a quebra de paradigmas em diversas áreas da empresa.
As informações levantadas na revisão da literatura e na pesquisa de campo constituem
os capítulos deste trabalho. O Capítulo 1 apresenta a fundamentação teórica. Foi realizada
uma pesquisa da evolução da gestão da manufatura pós-revolução industrial, tratando,
inicialmente, da gestão tradicional da gestão de manufatura com a produção em massa,
passando pelos ensinamentos de Henry Ford, com o início de uma visão de produção de baixo
custo e alta qualidade como meio de ganhar market share. Em seguida, trataremos da era dos
computadores com o MRP e MRP II, para então falarmos do just-in-time e mentalidade
“enxuta” (sem desperdícios) com Taiichi Ohno e a manufatura Toyota. Finalmente, abordamos
o Gerenciamento das Restrições com Goldratt, mostrando os cinco passos da metodologia
Tambor-Pulmão-Corda, com Gerenciamento de Pulmões, explicando o significado e razões
de se estabelecer Supermercado (Replenisment).
O Capítulo 2 apresenta a metodologia de pesquisa aplicada, sendo explicada a sistemática
adotada do estudo de caso, com os critérios seguidos na coleta e análise dos dados,
objetivando responder à questão-problema formulada, as quais nortearam o desenvolvimento
deste trabalho.
O Capítulo 3 inicia com a descrição do processo de fabricação de eletrodos de grafite,
ressaltando o mapeamento das operações e estoques. Na seqüência é apresentado o projeto
piloto de Tambor-Pulmão-Corda com Gerenciamento de Pulmões e Supermercado desenvolvido
nos Estados Unidos para replicação em todas as unidades. Neste capítulo, enquanto
apresentamos o projeto-piloto, trazemos a teoria que subsidiou as definições adotadas.
O Capítulo 4 contém a análise e os resultados da implementação do projeto TamborPulmão-Corda com Supermercado nas unidades de Candeias e Monterrey. Aqui apresentamos
os dados colhidos nas duas unidades, fazendo uma análise dos mesmos, de modo a avaliar a
implementação do projeto, as especificidades de cada unidade, seus sucessos, dificuldades e
ações de melhoria.
Finalmente, apresentamos, nas Considerações Finais, os benefícios obtidos, apresentando
perspectivas futuras de utilização do Gerenciamento das Restrições nas operações que
envolvem a fabricação de eletrodos de grafite.
CAPÍTULO 1
GESTÃO DA MANUFATURA
1.1 MÉTODOS DE PLANEJAMENTO E CONTROLE DA PRODUÇÃO
Durante todo o período de desenvolvimento do projeto piloto, consideramos a empresa
como sendo um sistema composto de um conjunto de elementos, entre os quais há alguma
relação de interdependência. Isto estava muito claro, até mesmo pela existência de vários
times de trabalho, mencionados na Introdução desta dissertação, com responsabilidades
distintas e obrigados a se reunir, com freqüência, para tratar de assuntos que necessitavam de
discussão conjunta para progredir.
O nosso grupo de trabalho se concentrou mais fortemente nos sistemas e nas funções
de planejamento e controle da produção.
A base teórica deste trabalho envolveu quatro diferentes métodos de planejamento e
controle da produção. O primeiro, denominado neste trabalho de método Tradicional, tem
como modelo a busca da máxima produtividade por centro de trabalho, em uma produção em
massa. É representado pelo modelo Ford de produção1. O segundo, o Planejamento das
Necessidades de Materiais (MRP), que evoluiu para o Planejamento dos Recursos de
Manufatura (MRP II), e mais adiante chegou ao chamado de método de Planejamento de
Recursos da Organização (ERP). O terceiro, é o método de Planejamento e Controle da
Produção da Filosofia Just-In-Time (JIT), que traz o Kanban como ferramenta operacional.
1
É importante ressaltar a grande visão de seu criador, Henry Ford.
21
Por fim, temos o quarto método, denominado de Programação e Controle do Gerenciamento
das Restrições (GR), baseado no método Tambor-Pulmão-Corda, criado por Eliyahu M. Goldratt.
Neste capítulo, abordaremos cada um desses métodos, com suas características e
funções identificáveis, encerrando com uma comparação entre elas, tentando mostrar que,
apesar das diferenças, em muitas situações os métodos são complementares. Isto quer dizer
que a adoção de um deles não implica necessariamente na exclusão do outro. Exemplo prático
dessa afirmação será constatado no decorrer dessa dissertação, onde poderemos observar que
o modelo proposto para a empresa é composto de uma combinação destes métodos.
1.2 MÉTODO TRADICIONAL DO GERENCIAMENTO DA PRODUÇÃO
Segundo Schonberger (1984, p.9):
[...] o advento da revolução industrial, nos meados do século dezoito, gerou o
próprio sistema fabril, ao lado de uma série de invenções. O traço característico do
sistema fabril é a eficiência, que se alcança por intermédio da divisão do trabalho,
das peças intercambiáveis e do grande volume da produção como se viu primeiro na
Europa e depois na América do Norte, o artesão especializado foi substituído pelo
operário não-especializado e semi-especializado.
Como informa o autor citado, o norte-americano Eli Whitney foi o pai da idéia das
peças intercambiáveis, lançada por volta de 1800, bem como de alguns outros progressos
correlatos em matéria de segurança, durabilidade, serviços ao consumidor e eficiência na
produção. A idéia dos componentes intercambiáveis constituiu um marco fundamental para o
advento da produção em massa. A concepção de produção padronizada impôs a necessidade
de controlar os estoques de material em processo, além de controlar, como normalmente se
faz, os produtos acabados e as matérias-primas; as despesas e as preocupações anexas ao
planejamento e controle dos estoques em processo podem ser contrabalançadas por entregas
mais rápidas, já que, enquanto aguardam os pedidos dos clientes, os produtos são mantidos
em processo quase final de acabamento.
A eficiência das fábricas pautava-se na padronização da concepção dos produtos, dos
seus componentes e ferramentas, bem como pela utilização de máquinas operatrizes
motorizadas padronizadas. Até então, apenas a mão-de-obra ficara fora da tentativa de
padronização. Para a força de trabalho, o controle aplicado baseava-se na prática do método
da “cenoura e do chicote”, conforme Schonberger (1984).
22
Mais tarde, a administração científica veio completar a padronização da fábrica,
atingindo, finalmente, os operários. Frederick W. Taylor, Frank e Lílian Gilbreth, e mais uma
série de outros estudiosos aperfeiçoaram as técnicas de estudar o trabalho, de forma a permitir
a padronização da tarefa dos operários. No estudo do trabalho, aperfeiçoa-se o método de
executar o serviço, aumentando sua eficiência e facilitando sua operação; depois, cronometrase o método aperfeiçoado, determinando-se o tempo padrão; em terceiro lugar, ensina-se aos
trabalhadores o método padronizado; e em quarto, programa-se, dirige-se e controla-se os
serviços, tomando como referência o método e o tempo padrão (SCHONBERGER, 1984).
O autor prossegue, relatando que, por volta de 1915, separadamente, Ford Harris e
R.H. Wilson montaram a fórmula do lote econômico. Por meio desta fórmula, chegaram a um
lote de tamanho economicamente correto, ou seja, nem tão grande, que acarretasse despesas
excessivas de manutenção, nem tão pequeno, que onerasse os custos de preparação do
maquinário. Esta fórmula visa suportar a busca da eficiência quando se produz em lotes
grandes, no modelo de produção em massa tradicional.
Pela década de 1920, a engenharia industrial, claramente, se firmou nos Estados
Unidos como a promotora da administração científica. A Europa levou, pelo menos, vinte
anos para aprender e praticar o estudo do trabalho. Este atraso, segundo alguns autores, talvez
explique boa parte da supremacia industrial dos Estados Unidos sobre o resto do mundo nas
décadas de trinta, quarenta e cinqüenta (SCHONBERGER, 1984).
O Sistema Ford simboliza a produção e o consumo em massa na América dessa época,
e, por que não dizer, é um exemplo seguido até hoje. Trata-se de um método de produção em
massa baseado no fluxo do trabalho, por vezes denominado de linha de montagem. Uma das
regras é fazer grandes lotes de uma única peça – isto é, produzir uma grande quantidade de
peças sem uma troca de matriz. Esta é uma das principais características do método de
produção em massa. A indústria automotiva americana tem mostrado continuamente que a
produção em massa planejada tem grande efeito na redução de custos. Este sistema de produção
lida com vastas quantidades e produz altos inventários de materiais acabados e em processo.
Henry Ford é referência do sistema que aqui denominamos de produção tradicional.
Na busca de realizar um sonho, e com a convicção de que a função do negócio é servir à
humanidade, produzindo para consumo e não meramente para ganhar dinheiro e especular, Ford
(2000, 2003) relata que investiu toda a sua vida no projeto de prover o carro, um bem de alta
utilidade, para a maior quantidade de pessoas, produzindo um produto de qualidade e baixo
preço.
23
A essência de suas idéias era que o desperdício e a ganância bloqueiam a entrega do
serviço verdadeiro. Ambos, desperdício e ganância, são desnecessários. Ele acreditava que o
processo de manufatura deveria distribuir o máximo em salários, aumentando o poder de
compra. Produzindo com o mínimo de custo e vendendo com o mínimo de lucro, ele poderia
distribuir o produto em consonância com o poder de compra. Com isso, todos que estivessem
conectados com o negócio – gerentes, trabalhadores e compradores – estariam contribuindo
da melhor maneira para a existência do negócio (FORD, 2000, 2003).
Como mostrado acima, as contribuições de Henry Ford vão além dos processos de
manufatura, tema que iremos tratar a partir de agora. No começo, a Ford era constituída
apenas de mecânicos ou de pessoas com habilidades mecânicas. Com o incremento da
produção ficou aparente que não era necessário, apenas, pessoas com essas habilidades. Do
mesmo modo, devido às proporções que a produção estava tomando, dificilmente o mercado
teria disponibilidade para treinar o número necessário destes profissionais. Baseado nisso,
Henry Ford (2000) concentrou esforços no desenvolvimento das habilidades de planejamento,
gerenciamento e ferramentas de construção (máquinas e equipamentos). Como resultado
dessas habilidades desenvolvidas, pessoas sem aptidão puderam aproveitar esses recursos,
engajando-se no processo produtivo de manufatura. Em outras palavras, esse processo
produtivo visava ser desempenhado por pessoas que pudessem aprender suas tarefas em
poucas horas ou poucos dias de treinamento, sem a necessidade de conhecimento ou
habilidades especiais (FORD, 2000).
Observa-se uma constante preocupação com a qualidade dos materiais e projetos, que
deve ser o mais simples possível, a redução do desperdício e o uso de máquinas e equipamentos
automatizados como ferramentas de incremento da produtividade. A idéia da instalação da
“linha de montagem” começou a tomar corpo quando se observou que muitos trabalhadores
da manufatura da Ford gastavam mais tempo em deslocamento ou movimento de peças e
ferramentas do que executando alguma tarefa de fabricação ou montagem propriamente dita.
Esses trabalhadores recebiam baixos salários, pois, segundo Ford (2000), o pedestrianismo
não poderia ser bem remunerado.
Segundo Ford (2000, p.80, tradução nossa): “[...] o primeiro passo para a linha de
montagem veio quando se passou a levar o trabalho ao homem ao invés do homem ao
trabalho.”2 Outros princípios gerais da linha de montagem na manufatura previam, por
exemplo, que o trabalhador não devia fazer mais do que um passo da montagem, e que
2
“The first step forward in assembly came when we began taking the work to the men instead of the men to the
work.”
24
nenhum trabalhador devia, sequer, se inclinar para executar sua tarefa. Desta forma, as
ferramentas e os trabalhadores eram dispostos numa seqüência lógica de produção, e cada
componente era deslocado na menor distância possível para finalizar o processo. As peças
eram movimentadas de forma repetitiva, e caíam sempre no mesmo lugar, em posição o mais
conveniente para a mão do trabalhador. Este, por sua vez, devia executar, se possível, apenas
um movimento, ou um passo de determinada montagem.
O marco da busca da eficiência da era Henry Ford foi a produção do “Modelo T”. Sua
frase “Qualquer cliente pode ter um carro pintado de qualquer cor contanto que seja preto.”3
(FORD, 2000, p.72, tradução nossa), traduz bem a importância que alcançou a busca da
eficiência nesse período. Henry Ford definiu um projeto de carro, com características, tais
como: qualidade de materiais, simplicidade de operação, suficiente potência, confiabilidade
absoluta, leveza, controle e pouca manutenção. Segundo ele, produzindo um carro com essas
características e com um preço mais accessível, o problema seria atender a demanda. Por isto,
todos poderiam ser fabricados na cor preta, o que também contribuiria para aumentar a
produtividade, baixar o custo e atender a demanda. O plano de produção, portanto, era
estabelecido a partir de metas de produção, que tinham como objetivo produzir sempre o
máximo. Com isto, acreditava-se que a demanda era ilimitada, estando as restrições sempre
dentro da manufatura.
Em resumo, verificamos uma preocupação com a eficiência, com a produção em larga
escala, altos inventários, qualidade intrínseca do produto, inspeção intensiva, programação
baseada em ponto de pedido e visando atender/produzir o maior volume de produtos possível,
geralmente a partir de um meta de produção. No entanto, Henry Ford (2000) relata uma
preocupação muito grande com a eliminação do desperdício, principalmente no que dizia
respeito à perda de tempo e qualidade, pois acreditava ser a finalidade de qualquer negócio
prestar “serviço”, com custo baixo e lucratividade pequena.
O método Ford de produção é chamado de tradicional, porque ele foi o primeiro
sistema de produção estabelecido para gerenciar organizações industriais e por ter sido bemsucedido em sua época. O sistema tradicional de gestão de manufatura ainda é muito utilizado
em nossos dias, especialmente em empresas pequenas e em empresas de países em
desenvolvimento.
3
“Any customer can have a car painted any colour that he wants so long as it is black.”
25
1.3 MÉTODO DE PROGAMAÇÃO DA PRODUÇÃO MRPs
A American Production and Inventory Control Society (APICS) é, mundialmente, a
responsável pela maioria das publicações sobre o método MRP. Cox III e Spencer (2002,
p.50-51) apresentam a seguinte definição do MRP:
[...] um conjunto de técnicas que utiliza a estrutura de produto, dados de estoque e o
plano mestre de produção para calcular as necessidades de materiais. Faz
recomendações para liberar ordens de reabastecimento de material. Além disso, já
que é programado levando o tempo em consideração, o MRP faz recomendações
para reprogramar ordens em aberto quando os prazos de entrega e as datas
necessárias não estão em dia [...]
Com base na definição acima, Fullmann et al. (1989) citam as metas e objetivos do
MRP, bem como suas funções e atividades. Como metas e objetivos, destacam a rotatividade
dos estoques, atendimento ao cliente, produtividade de mão-de-obra, utilização de capacidade,
custo de material, custo de transporte e custo do sistema. Como funções e atividades do MRP
os autores listam a previsão e entrada dos pedidos, o Plano Geral de Produção, o Plano Mestre
de Produção, liberação das ordens (colocação, aumento, redução, cancelamento), seguimento
follow-up (compras, recebimento e controle da produção), planejamento de capacidade,
manutenção de registros e coordenação.
No MRP, uma das metas principais é conseguir melhores serviços com redução dos
estoques, utilizando, para isto, programações e reprogramações dos recursos disponíveis. Por
este motivo, segundo Cox III e Spencer (2002), o cálculo do MRP é visto atualmente como
uma simples ferramenta de programação.
Ao longo do tempo, foram adicionados ao planejamento de prioridades do MRP, o
planejamento de capacidades e vários módulos operacionais e financeiros, transformando-o
no que passamos a conhecer como Manufacturing Resources Planning (MRP II) –
Planejamento dos Recursos de Manufatura. Inicialmente, o plano comercial não era
interligado aos planos de produção e o plano mestre de produção os reunia através do
departamento de planejamento da produção. Da mesma forma, a contabilidade possuía seu
próprio sistema para formação do inventário, já que a precisão dos números de controle do
inventário era questionável. As empresas ainda tinham outros sistemas tais como: marketing,
distribuição e compras. Aos poucos, o MRP foi interligando as diversas áreas, tornando-se
aplicável para toda a empresa, envolvendo vários aspectos – manufatura, finanças, marketing,
engenharia, compras, distribuição e processamento de dados. Logo, o MRP II combina o
26
plano de produção e o plano comercial, envolvendo a programação e controle da produção e
inventários.
Segundo Cox III e Spencer (2002), em um MRP, o plano mestre de produção utiliza
como dado de partida a previsão de vendas e os pedidos em carteira. Esses dados são
convertidos em necessidades de capacidade e de materiais e são comparados com a
capacidade e os níveis de estoques existentes.
O Planejamento de Capacidades ocorre juntamente com o processo de geração do
Plano Mestre. O planejamento das prioridades ocorre dentro do próprio cálculo do MRP. Para
determinar quando o material é necessário para atender ao plano mestre, o MRP passa as
necessidades brutas da montagem para seus componentes. Ao fazer isso, as datas de entrega
são deslocadas pelos tempos de produção pré-estabelecidos ou calculados como parte lógica
interna do MRP (tempo de atravessamento). O controle de prioridades ocorre, dentro do
MRP, à medida que os pedidos planejados são enviados para os departamentos de produção e
o material é liberado para se conferir as quantidades com os novos pedidos lançados na
fábrica. Conforme a produção real ocorre, qualquer desvio é identificado, já que o status do
pedido é reportado ao sistema (COX III; SPENCER, 2002).
Segundo os autores citados, baseado em uma previsão de vendas ou plano de
negócios, é traçado o Plano de Produção da empresa, que fornece uma orientação de longo
prazo para a organização. No Plano de Produção, estabelecemos também o plano de
inventário desejado e elaboramos um plano de mão-de-obra. Além disso, deve ser
considerado um plano financeiro englobando todo esse cenário. A partir do Plano de
Produção, é elaborado o Programa Mestre de Produção e, depois, os programas detalhados a
curto prazo. O Plano de Produção deve ser verificado em relação às suposições de capacidade
que foram feitas. Essa verificação é superficial, podendo ser baseada no valor médio de
entregas e de produção ou na comparação de horas de manufatura requerida versus total de
horas de manufatura disponíveis.
Aprovado o Plano de Produção, o próximo passo é a elaboração do Programa Mestre
de Produção, baseado no primeiro. Este Programa consiste em determinar as quantidades
finais a serem produzidas por período de tempo. Os autores ressaltam que o Programa Mestre
de Produção implementa um plano de produção de fato, e não uma previsão.
No processo de desenvolvimento do Programa Mestre de Produção, várias áreas
tradicionais do negócio fornecem dados para o processo de planejamento da produção. A
primeira destas áreas é o Marketing/Vendas, que fornece as previsões de vendas. A seguir, a
Manufatura fornece dados referentes às capacidades. Também participam do processo as
27
áreas de Finanças, Compras e Pessoal. Deste modo, esse Programa tem duas importantes
funções: primeiro, fornece uma base para o planejamento de prioridades e o planejamento de
capacidade a curto prazo, isto é, entre hoje e algumas semanas ou meses à frente; segundo,
fornece base para o planejamento de recursos (COX III; SPENCER, 2002).
A maioria das empresas utiliza o sistema MRP de “lote”, ou seja, com o último
Programa Mestre, a última informação sobre os registros de inventário e as últimas listas de
materiais é executado o replanejamento e o registro de inventário de cada item é recalculado,
nível a nível (WIGHT, 1984).
Sobre o estoque de segurança4, Fullmann et al. (1989) esclarecem que é afetado pelos
seguintes elementos: incerteza de demanda durante o prazo de reposição; incerteza do prazo
propriamente dito; importância do serviço; e importância do inventário. Uma vez alcançado
um plano de ação ou julgamento quanto à importância destes itens e desenvolvida uma
medida do erro de previsão, é determinado o volume de estoque de segurança. A redução do
estoque de segurança necessário, exige, segundo os autores citados: previsão melhor; opção
por baixar o desempenho de serviço; ou introdução de um ciclo de inventário maior.
Segundo Fullmann et al. (1989), apesar de o MRP ser um método que tem sua
aplicação principal na programação da produção, é comum encontrar 70% das tarefas
atrasadas em qualquer operação, se comparadas a seu prazo. Ao mesmo tempo, se olharmos
em relação às prioridades, muitas não são realmente necessárias. Uma das explicações, é que
nem sempre a operação respeita a relação de prioridades. Outro fator importante é reconhecer
certas dependências de prioridades.
Merece também atenção o grande número de obstáculos externos que ocorrem após a
liberação de uma ordem de fabricação e requisição de compras. Como exemplo, citamos:
pedido de urgência de bons clientes; recuperação; greves; faltas; mudanças técnicas; perda por
refugo; excesso de produção; introdução de produtos novos; ferramental que não corresponde
ao desejado e a quebra do equipamento. Outra preocupação é representada pelos erros de
registros, que ocorrem, ainda que tenha sido implantado um sistema de inventário
computadorizado. Junta-se a isto, a incapacidade do Marketing de fornecer previsões
confiáveis da demanda do item final e a pressão contínua dessa área para acrescentar novos
pedidos e produtos (FULLMANN et al., 1989). Portanto, como sugerem os autores citados, a
primeira necessidade é elaborar um Plano Mestre que todos aceitem e respeitem, para que
possam trabalhar em conjunto e fazê-lo funcionar. O Plano Mestre é simplesmente o ponto de
4
Estoque de segurança é considerado um fator de planejamento para contornar incertezas e imprevistos. Ele
deve ser somado à demanda média no cálculo do ponto de pedido (FULLMANN et al. 1989).
28
partida; é necessário, porém, que as linhas de comunicação estejam abertas, para permitir uma
operação sincronizada.
O que ocorre com freqüência, de acordo com Fullmann et al. (1989), é que, mesmo
tendo uma boa estimativa do tempo de reposição, os pedidos são marcados como “urgente”,
devido à demanda variável, fazendo com que o sistema de prioridades não seja efetivo.
A obtenção de um Plano Mestre de Produção viável, segundo os autores citados, exige
um planejamento superficial da capacidade. Isto é conseguido selecionando os centros de
carga críticos dentro da fábrica. Depois de identificados, é preciso elaborar algum tipo de
unidade de medida comum, que permita medir a capacidade. Deve-se, então, decidir, do ponto
de vista de balanceamento de cargas, o ponto até onde se está disposto a chegar, no que diz
respeito a problemas de capacidade.
O MRP calcula as necessidades líquidas, a programação e a liberação planejada de
ordens de produção, gerando o plano de materiais. Desta forma, a preocupação é verificar se
há materiais disponíveis. Mesmo quando se discute o planejamento de prioridades, a
preocupação está relacionada com a disponibilidade de materiais, combinações erradas, o
prazo deles e coisas deste tipo.
No outro lado, esclarecem Fullmann et al. (1989), existe a questão do Planejamento de
Capacidade, que envolve as abordagens “Carregamento Infinito” e “Carregamento Finito”. Se
há capacidade, pode-se prosseguir; caso contrário, deve-se procurar ajustar o programa. O
Planejamento das Necessidades de Capacidade no MRP são estimativas que levam em
consideração vários tempos da manufatura, tais como: tempo de processamento; de fila; de
movimentação; de cotação de terceiros; de controle de qualidade; e de distribuição.
Inicialmente é executada a abordagem chamada de “Carregamento Infinito”, na qual os
pedidos planejados e os pedidos em aberto são jogados na carga, semana por semana, sem
considerar o volume de horas disponíveis da máquina. Em seguida, são verificados os
resultados, e os ajustes necessários são realizados. A posteriori, com a ajuda dos
computadores, as cargas são balanceadas nos diversos postos. Isto é denominado
“Carregamento Finito”. Este balanceamento deve ser feito em todo o roteiro ao mesmo tempo,
daí a necessidade de computadores com capacidade.
O MRP e o MRP II são, basicamente, métodos de programação (e reprogramação) e
controle, podendo ser aplicado com seus próprios conceitos de gestão da manufatura ou com
os métodos JIT e GR, utilizando os conceitos destes.
29
1.4 MÉTODO JUST IN TIME (JIT)5
O método JIT se concentra na eliminação de desperdício no processo de manufatura.
Desperdício é entendido como tudo aquilo que não acrescenta valor ao produto. Desenvolvido
por Taiichi Ohno, criador do Sistema Toyota de Produção, nos anos 70, em resposta à
primeira crise internacional de petróleo, o JIT introduziu uma idéia simples: a total eliminação
de desperdício.
O JIT é assim definido por Cox, Blackstone e Spencer (1985, p.42):
Uma filosofia de produção baseada na eliminação de todos os tipos de desperdícios e
na melhoria contínua da produtividade. Abrange a execução bem sucedida de todas
as atividades necessárias para se produzir um produto final, desde seu projeto até sua
expedição, incluindo todas as etapas de conversão desde a matéria-prima. Os
elementos principais do “just-in-time” incluem possuir apenas o inventário
necessário, aprimorar a qualidade para defeito zero, reduzir os tempos de
atravessamento através da redução dos tempos de preparação, o tamanho das filas e
o tamanho dos lotes, melhorar incrementalmente as próprias operações em si
mesmo; e realizar essas atividades a um custo mínimo. No sentido mais amplo,
aplica-se a todas as formas de manufatura, de “job shops” e de processos, bem como
à manufatura repetitiva.
Para Taiichi Ohno (1997, p. 26):
[...] o just-in-time significa que, em um processo de fluxo, as partes corretas
necessárias à montagem alcançam a linha de montagem no momento em que são
necessários e somente na quantidade necessária. Uma empresa que estabeleça esse
fluxo integralmente pode chegar ao estoque zero. Do ponto de vista da gestão da
produção, esse é um estado ideal. Fluxo de produção na ordem inversa.
Isso quer dizer que, para fornecer os componentes usados na montagem, um processo
final vai para um processo inicial para retirar apenas o número de peças necessárias e somente
quando elas são necessárias. Nesta forma reversa, o processo de fabricação vai do produto
acabado de volta para o departamento onde teve início a montagem dos materiais. Este tipo de
fluxo de produção é conhecido como “puxar”, em contraposição ao fluxo de produção
tradicional, denominado “empurrar”. Cada elo na corrente just in time está conectado e
sincronizado.
5
A base teórica utilizada nesta seção está exposta nas obras de Ohno (1997), Schonberger (1984) e Fullmann et
al. (1989).
30
Entretanto os tempos mudam. Como diz Ohno (1997, p.xi): “Tudo o que estamos
fazendo é olhar a linha do tempo [...] do momento que o freguês nos entrega um pedido até o
ponto em que recebemos o dinheiro. E estamos reduzindo essa linha do tempo removendo os
desperdícios que não agregam valor.”
Ohno (1997) define os dois pilares necessários à sustentação do sistema Toyota de
Produção como sendo o JIT e a automação com um toque humano, ou autonomação. A
ferramenta utilizada para operá-lo é o Kanban, idéia desenvolvida por Ohno a partir do estilo
dos supermercados6 americanos surgidos em meados dos anos 50.
“Autonomação” é a idéia que surgiu com a invenção de uma máquina de tecer autoativada por Toyoda Sakichi, fundador da Toyota Motor Company. O tear parava
instantaneamente se qualquer um dos fios da urdidura ou da trama se rompesse. Um
dispositivo que podia distinguir entre condições normais e anormais foi inserido na máquina,
permitindo a produção apenas de produtos perfeitos. Caso contrário, a máquina era parada.
A autonomação também muda o significado da gestão. Não é necessário um operador
enquanto a máquina estiver funcionando normalmente. Apenas quando a máquina pára,
devido a uma situação anormal, é que ela recebe atenção humana. Como resultado, um
trabalhador pode atender diversas máquinas, tornando possível reduzir o número de
operadores e aumentar a eficiência da produção.
Parar a máquina, quando ocorre um problema, força todos a tomar conhecimento do
fato. Quando o problema é claramente compreendido, a melhora é possível. Esta regra é
aplicada no JIT. Mesmo numa linha de produção operada manualmente, os próprios
trabalhadores devem acionar o botão de parada para interromper a produção se surgir
qualquer anormalidade.
Segundo Ohno (1997), a descoberta da raiz do problema e sua conseqüente correção é
possível repetindo-se a pergunta “por que” por cinco vezes. Ou seja, perguntando-se cinco
vezes “por que” e respondendo a cada vez, pode-se chegar à verdadeira causa do problema,
que, geralmente, está escondida atrás de sintomas mais óbvios. Com isso, obtém-se a melhoria
contínua dos processos.
Ohno (1997) informa que na Toyota, como em todas as indústrias manufatureiras, o
lucro só pode ser obtido com a redução de custos. A redução de custos deve ser o objetivo dos
fabricantes de bens de consumo que buscam a sobrevivência. Principalmente em períodos de
6
O processo final (cliente) vai até o processo inicial (supermercado) para adquirir as peças necessárias, no
momento e na quantidade que precisa. O processo inicial imediatamente produz a quantidade recém-retirada
(reabastecimento das prateleiras). (OHNO, 1997).
31
lento crescimento econômico, este sistema de produção representa um conceito em
administração que pode ser aplicado a qualquer tipo de negócio, em qualquer lugar do mundo.
O primeiro passo para a aplicação do Sistema Toyota de Produção é identificar
completamente os desperdícios: desperdício de superprodução; desperdício de tempo
disponível (espera); desperdício em transporte; desperdício do processamento; desperdício de
estoque disponível; desperdício de movimento; e desperdício de produzir produtos
defeituosos.
A eliminação total do desperdício deve considerar os seguintes aspectos: o aumento da
eficiência só faz sentido quando está associado à redução de custos; a eficiência de cada
operador e de cada linha, bem como os operadores como um grupo, devem ser observados. A
eficiência deve ser melhorada em cada estágio e, ao mesmo tempo, na fábrica como um todo.
Para Schonberger (1984), o desperdício existente não é identificado prontamente no
balanço da empresa. Ele se manifesta na forma de estoques altos, baixo nível de qualidade,
altos índices de refugos e longo lead-times.
Na visão de Ohno (1997), se uma peça é necessária na razão de 1.000 por mês, devese fazer 40 peças por dia, durante 25 dias. Além disso, a produção precisa ser distribuída de
forma homogênea ao longo da jornada de trabalho. Se a jornada é de 480 minutos, deve-se ter,
na média, uma peça a cada 12 minutos. Esta idéia, mais tarde, evoluiu para o nivelamento da
produção. O modo pelo qual o Sistema Toyota, ou japonês, de produção deve ser operado,
implica em estabelecer um fluxo de produção e uma forma de manter um constante
suprimento externo de matérias-primas.
Ohno (1997) acreditava ser a fábrica a principal fonte de informação da manufatura.
Ela fornece as informações mais diretas, atualizadas e estimulantes sobre a gerência. Outro
ponto importante do Sistema Toyota de Produção é o controle visual, que é estabelecido
integralmente. Folhas de trabalho padrão são afixadas em local bem visível, em cada estação
de trabalho, e chegam com um kanban afixados nelas. A alta eficiência da produção também é
mantida pela prevenção da ocorrência de produtos defeituosos, erros operacionais, acidentes,
e pela incorporação das idéias dos trabalhadores. Tudo isso é possível por causa da
imperceptível folha de trabalho padrão. Ela é totalmente baseada em princípios e desempenha
um papel importante no sistema de controle visual da Toyota, listando com clareza os três
elementos do procedimento de trabalho padrão: tempo de ciclo, seqüência do trabalho e
estoque padrão.
A manufatura também é feita através do trabalho em equipe. Para exemplificar, Ohno
(1997) utiliza uma analogia: a melhor forma de fazer com que o barco vá mais rápido é
32
fazendo com que todos distribuam a força igualmente, remando parelho e à mesma
profundidade. Os coordenadores de equipes têm como principal tarefa treinar os trabalhadores
e os operários são ensinados a ajudar uns aos outros, sendo reconhecidas as diferenças
individuais.
JIT é uma filosofia de operação de toda a empresa para crescimento, sobrevivência e
perfeição a longo prazo, em vista da concorrência mundial. Ela incorpora campanhas contra o
desperdício e para a flexibilidade necessária para responder às mudanças das condições do
mercado, incluindo esforços contínuos para reduzir os defeitos, inventários, necessidades de
espaço de produção e mão-de-obra no produto final. A sobrevivência e o crescimento a longo
prazo só podem ocorrer se forem mantidos níveis adequados de lucro. Esses níveis só podem
ser mantidos elevando-se os preços ou aumentando-se os volumes. Elevar os preços não é
uma política viável porque depende do mercado. Com isso, a idéia é aumentar a fatia,
assegurando a sobrevivência a longo prazo (OHNO, 1997).
A filosofia do JIT visa a encontrar e usar os meios mais simples e baratos para
planejar, programar e controlar o fluxo de material no processo de manufatura para produzir o
que os consumidores querem, apenas na proporção do consumo, com a qualidade perfeita e
sem desperdício de tempo, mão-de-obra, material, energia ou equipamento, para que não
exista inventário ocioso, utilizando métodos que permitam o desenvolvimento das pessoas. A
baixa qualidade aumenta os custos de retrabalho e substituição, interrompe as operações
manufatureiras e faz com que as entregas sejam reprogramadas. Ela também aumenta o
estoque quando se aplica o estoque de segurança, previsões de refugo e eficiências.
Schonberger (1984) apresenta os objetivos do sistema de produção JIT, destacando:
converter matérias-primas dos fornecedores em produtos finais às mãos dos consumidores
dentro de um prazo mínimo absoluto e manter um mínimo inventário; reduzir continuamente
os níveis de inventário; reduzir ao mínimo os tempos de ajuste e troca de ferramentas; reduzir
o tamanho dos lotes, buscando ser possível a cada centro de produção conseguir lotes de uma
unidade; processar o material através do sistema baseado nas necessidades reais, ao invés de
empurrá-lo em antecipação a elas; reduzir os custos totais e melhorar a qualidade do produto
fabricado.
O autor afirma que o sistema nipônico de dirigir a produção e a qualidade possui
raízes em sua cultura nacional. Esses sistemas compõem-se de processos e técnicas simples, a
maior parte dos quais não precisa, para se instalar, de qualquer ambiente especial, nem de
qualquer panorama cultural especial. O excelente controle sobre a qualidade não resulta
simplesmente dos lotes de dimensões reduzidas e da pronta descoberta das peças defeituosas,
33
mas de uma investida empresarial global que, desde 1949, vem sendo desfechada contra a má
qualidade. O choque do petróleo pode ter ajudado o Japão a construir o sistema just-in-time,
mas, muito antes, em 1949, o Japão plantou um marco histórico, na jornada em prol do
controle da qualidade de seus produtos. A União dos Cientistas e Engenheiros Japoneses
(UCEJ) criou o Grupo de Pesquisas para o controle da qualidade, ao mesmo tempo em que,
juntamente com a Associação Japonesa de Padrões (AJP) passou a promover seminários que
visavam à divulgação da qualidade. Os Doutores W. E. Deming (em 1950) e J. M. Juran (em
1954), líderes de CQ nos Estados Unidos, foram convidados a proferir palestras no Japão.
As primeiras atividades de treinamento na área do CQ limitaram-se aos dirigentes
mais altos das empresas e seus engenheiros. Em 1960, elas passaram a se concentrar nos
supervisores.
Conscientizar-se, organizar-se e implantar as técnicas ocidentais para controlar a
qualidade (especialmente as da amostragem estatística) construíram o cerne dos primeiros 15
anos da campanha que se lançou no país inteiro em prol do controle da qualidade. O controle
da qualidade total lá praticado destaca os seguintes pontos, em especial: a meta de aprimorar
continuamente a qualidade dos produtos; a responsabilidade do trabalhador (e não do
departamento de CQ); o controle da qualidade em todos os processos de fabricação, sem se
limitar a examinar amostras só de determinados processos (equivale à prevenção dos defeitos
e não à sua descoberta ocasional); o emprego, para medir a qualidade, de aferições visíveis,
visuais, simples e fáceis de entender até por observadores casuais; o emprego de dispositivo
que automaticamente meçam a qualidade.
O controle da qualidade total (CQT) pode funcionar sozinho e pode operar em
conjunto com a produção JIT. No CQT, impõe-se no pessoal da fábrica a idéia de que o
controle da qualidade constitui um fim em si mesmo. Os erros, se ocorrerem, devem ser
descobertos e eliminados na fonte, isto é, no ponto em que se faz o trabalho. Esta concepção
opõe-se à generalizada regra ocidental da fiscalização, através de amostra estatística após o
lote já estar produzido.
No Japão, várias foram as investidas para se acabar com a má qualidade, desde uma
série de processos destinados a controlar a qualidade dos produtos, a um extremado asseio nas
fábricas, passando pelo emprego de estatísticas e gráficos do tipo espinha de peixe, que
mostram causas e efeitos, defeito zero, que aproveita as idéias individuais relacionadas à
melhoria de qualidade, chegando até os círculos de controle da qualidade e à autoridade que
se concede aos trabalhadores para paralisar as linhas de produção quando se trata de eliminar
algum problema que prejudique a qualidade. O verdadeiro potencial do just-in-time e do
34
controle de qualidade total reside em suas propriedades amplificadoras. Uma rodada de
aprimoramentos resultantes do just-in-time e do CQT tende a desencadear outra rodada,
depois outra, e assim por diante. A esse processo Schonberger (1984) denomina de melhoria
contínua.
1.4.1 Kanban – Ferramenta Utilizada para Operar o JIT
O Kanban é o meio usado para transmitir informação sobre apanhar ou receber a
ordem de produção. O Kanban é uma das técnicas (instrumento, ferramenta) usadas para
atingir a meta do JIT e não um sinônimo de JIT. Fullmann et al. (1989) ressaltam a
importância de se compreender que dois tipos de atividade são denominadas pelo termo
Kanban:
- Um sistema de controle de fluxo de material ao nível da fábrica, desde o
Almoxarifado de Matérias-Primas até o Armazém de Produtos acabados (Kanban interno), o
qual se estende, em alguns casos, ao controle do material distribuído ou recebido de
fornecedores (Kanban externo);
- Um sistema para um contínuo melhoramento da produtividade, mudando-se o
equipamento, métodos de trabalho e práticas de movimentação de material, usando o sistema
de controle de cartões (Kanban) para identificar as áreas com problemas e avaliar os
resultados das mudanças.
Segundo esses autores, os conceitos básicos do Kanban são simples, mas existe uma
pequena discussão sobre os diferentes meios pelos quais a palavra Kanban é usada:
- “Kanban” significa cartão. Os cartões são usados para autorizar o movimento de
material (Kanban de Movimentação) ou sua produção (Kanban de Produção) neste sistema de
controle.
- “Kanban” significa o sistema de controle de fluxo usando os cartões.
- “Kanban”, no próprio contexto, refere-se às melhorias nos métodos de produção
iniciados pelo uso de cartões Kanban para o controle do material.
35
O sistema Kanban estabelece um controle visual de toda a produção. Cada estação de
trabalho processa em seqüência um grupo de peças em lotes de tamanho limitado,
continuamente. As áreas de entrada e saída de cada estação de trabalho são estritamente
definidas e restritas em dimensão. Os cartões Kanban de movimentação são usados para
solicitar e autorizar transferências de quantidades padrão de peças de área de saída das
estações de trabalho subseqüentes. Cada cartão de movimentação mostra o tipo de peça e o
local físico de onde vem e para onde vai, independentemente das estações de trabalho em
questão estarem ou não geograficamente próximas. Os cartões de movimentação e produção
são usados para unir todas as operações de manufatura e compras, necessárias para fazer um
produto. Os contenedores de peças na área de espera da entrada sinalizam com os cartões.
Cada contenedor vazio da área de espera da entrada de uma estação seguinte de trabalho é
devolvido à área de saída da estação de trabalho precedente com um cartão de movimentação.
O cartão de produção é retirado de um contenedor cheio e o cartão de movimentação é
substituído. As peças, então, são transferidas para a estação seguinte. O cartão de produção
removido se junta a um painel de cartões de ordem de produção dentro da estação de trabalho
para repor a saída. Quando chega a vez daquele cartão, a informação dele indica o que
produzir e onde as peças necessárias estão situadas na entrada.
Em um sistema “JIT”, o máximo de inventário entre dois pontos de trabalho é
determinado pelo numero de cartões Kanban e pela quantidade de cada contenedor. O
objetivo principal do Kanban é obter produção no momento exato a baixo custo e com alta
qualidade. Para conseguir isto, o sistema tenta eliminar o estoque entre os sucessivos
processos e minimizar equipamentos, instalações ou empregados ociosos.
O Kanban é um sistema de “puxar”; o departamento usuário puxa a peça ou as
submontagens dos processos fornecedores. Não é permitido uma produção ou estocar sem um
cartão Kanban.
A lógica MRP é usada para estabelecer os índices de demanda nos ambientes viáveis
para aplicação do Kanban. É importante ter em mente que o Kanban é apenas uma parte do
sistema de fabricação “JIT”, o qual também abrange o planejamento de produção pela alta
gerência, um programa mestre de produção apoiado pelo computador, uma lista de material,
reduções no tempo de preparação, melhoramentos na qualidade e mudanças no projeto do
produto.
O Kanban tem suas raízes na motivação do empregado e pressupõe que eles terão um
desempenho melhor quando lhes forem confiadas maiores responsabilidades e autoridade.
Cada empregado do JIT/Kanban tem o direito de parar a linha de montagem quando ele está
36
atrasado ou descobre uma peça ou submontagem com defeito. A abordagem também
pressupõe que os empregados irão se ajudar quando ocorrer atrasos, considerando suas
multifuncionalidades.
A forma de Kanban mais freqüentemente usada é um pedaço de papel dentro de um
envelope de vinil retangular. Neste pedaço de papel se encontram as seguintes informações:
informação de coleta; informação de transferência; e informação de produção.
Normalmente, em uma empresa, o QUÊ, o QUANDO e o QUANTO é estabelecido pela
seção de planejamento de produção na forma de um plano de início de trabalho, plano de
transferência, ordem de produção, ou pedido de entrega que é passado para toda a fábrica.
Quando esse sistema é usado, o “QUANDO” é determinado arbitrariamente e as pessoas
pensam que estará tudo bem se as peças chegarem a tempo, ou antes. O gerenciamento das
peças feitas com muita antecedência significa, contudo, o envolvimento de muitos
trabalhadores intermediários. A palavra just-in-time significa exatamente isso. Se as peças
chegarem antes que sejam necessárias – e não no momento exato em que são necessárias –
teremos desperdício.
A primeira regra do Kanban é que o processo subseqüente vai para o precedente para
buscar produtos. Para o processo precedente, entretanto, isso significa eliminar o programa de
produção com que eles contaram durante muito tempo. Os operários da produção têm uma
grande dose de resistência à idéia de que produzir tanto quanto possível não é mais uma
prioridade. Tentar produzir apenas os itens retirados também significa fazer a troca de
ferramentas com mais freqüência, a menos que a linha de produção esteja dedicada a um
único item.
A segunda regra do Kanban prega fazer com que o processo precedente produza
apenas a quantidade retirada pelo processo subseqüente; isto faz com que a força de trabalho e
o equipamento, em cada processo de produção, estejam preparados, em todos os aspectos,
para produzir as quantidades necessárias no momento necessário.
Neste caso, se o processo subseqüente faz retiradas irregulares em termos de tempo e
quantidade, o processo precedente deve ter mão-de-obra e equipamento adicionais para
aceitar esses pedidos. Quanto maior a flutuação na quantidade retirada, tanto mais capacidade
excedente é requerida pelo processo precedente. Por causa disso, flutuações na produção e nos
pedidos no processo final têm um impacto negativo sobre todos os processos precedentes.
Para evitar a ocorrência de tais ciclos negativos, deve-se buscar um fluxo o mais suave
possível na produção. No Sistema Toyota de Produção, isto é chamado de nivelamento da
37
produção, ou suavização de carga. Idealmente, o nivelamento deveria resultar em flutuação
zero na linha de montagem final ou no último processo; contudo isto é muito difícil.
O Sistema Toyota de Produção exige produção nivelada e os menores lotes possíveis,
mesmo que isso pareça contrário à sabedoria convencional. Produzir em pequenos lotes
significa que não se pode operar com uma prensa por muito tempo. Para responder à
variedade nos tipos de produto, a matriz deve ser mudada com freqüência. Conseqüentemente,
os procedimentos de troca de ferramentas devem ser executados rapidamente.
Para que o Kanban seja efetivo, a estabilização e a sincronização da produção são
condições indispensáveis.
O processamento de pedidos de clientes e de informações sobre as necessidades e
desejos do mercado pode ser muito efetivo, se realizado por computador. Porém, a
informação necessária para fins de produção, embora se chegue a ela gradualmente, não é
necessária com 10 ou 20 dias de antecedência.
Para se obter uma operação tranqüila, o programa de produção e o sistema de
informação devem estar estreitamente relacionados. Em primeiro lugar, deve-se ter um plano
de produção anual. Isso significa o número aproximado a ser produzido e vendido durante o
ano corrente. Em seguida, a programação mensal da produção do mês subseqüente é
anunciada internamente e, no início do mês, uma programação mais detalhada é
“estabelecida”. Com base nestes planos, a programação diária da produção é determinada em
detalhe e inclui o nivelamento da produção.
Essa seqüência diária programada é enviada a apenas um lugar: a linha de montagem
final. Esta é uma característica especial do sistema de informação da Toyota. Em outras
empresas, a informação da programação é enviada para todos os processos de produção. O
processo precedente faz tantas peças quantas foram usadas, eliminando a necessidade de uma
programação especial da produção. Em outras palavras, o Kanban funciona como um pedido
de produção para os processos anteriores.
O excesso de operários, equipamentos e produtos apenas aumenta os custos e causa
desperdício secundário. Por exemplo, com operários demais, inventa-se trabalho
desnecessário que, por sua vez, aumenta o uso de energia e de materiais. O maior de todos os
desperdícios é o excesso.
As opiniões são divergentes quanto às vantagens econômicas de manter uma
capacidade de produção extra. A idéia é utilizar a capacidade em excesso com trabalhadores e
máquinas que, de outra forma, estariam ociosos, sem incorrer em novos gastos, mantendo o
plano de produção diário em dia.
38
Há também o problema de reduzir o tamanho dos lotes. Quando uma máquina de
múltiplas finalidades, como uma prensa de matriz, possui excesso de capacidade, é vantajoso
reduzir o tamanho do lote tanto quanto possível, sem considerar o problema da redução do
tempo de troca de ferramentas. Se a máquina ainda tiver excesso de capacidade, é melhor
continuar a reduzir o tempo de troca de ferramentas para utilizá-la.
Ohno (1997), assim como Goldratt (1990), desafiou a contabilidade de custos, ao
afirmar que, embora compreensível, é errado pensar que itens produzidos em massa são mais
baratos por unidade.
O JIT não aceita mais o princípio do estoque intermediário. Em vez de ficar criando
novos estoques entre os diversos pontos onde surgem as irregularidades, seus gerentes de
produção expõem deliberadamente a força de trabalho às conseqüências da falta dos mesmos.
O resultado é que os trabalhadores e seus chefes juntam-se para eliminar as causas de todas as
irregularidades que aparecem.
O JIT favorece uma reação mais rápida ao mercado, uma melhor possibilidade de
previsão, um menor estoque ocioso mantido no sistema, reduzindo o período de espera geral,
que se estende do momento da compra das matérias-primas até o momento do despacho dos
produtos acabados. Dessa forma, o marketing pode prometer entregas mais rápidas, pode
alterar o conjunto ou a quantidade dos produtos com maior rapidez e pode ainda prever
melhor a demanda, já que seu horizonte de previsão não avança tanto no futuro.
Com relação ao preço, a tática japonesa mais empregada é a de operar com reduzida
margem de lucro. Essa tática tem sido tratada pela imprensa ocidental, geralmente ligada a
reflexões sobre a perspectiva japonesa de longo prazo, em oposição à obsessiva necessidade
ocidental de atingir alvos que se traduzam em lucros a curto prazo.
Em resumo, segundo Schonberger (1984), as grandes empresas japonesas continuam a
ver a estratégia do domínio do mercado principalmente como conquista de sua produção; a
agressividade no preço e no marketing limita-se a fornecer o ímpeto para a aceleração do
ritmo. Inversamente, as firmas ocidentais que têm conseguido conquistar parcelas de
mercados encaram a produção como uma espécie de expectadora do processo.
Outro fator importante é ter uma programação inferior à capacidade plena, o que ajuda
a alcançar a programação diária. Esse ponto vale também para o controle da qualidade. Em
primeiro lugar, ele viabiliza a paralisação da linha quando surge qualquer problema, ligado ou
não a qualidade (o princípio da paralisação da linha). Além disso, a programação inferior à
capacidade plena evita as pressões sobre os trabalhadores – bem como a sobrecarga do
equipamento, das ferramentas e do pessoal de apoio – poupando, dessa forma, erros na
39
qualidade, que poderiam resultar da pressa. Permite também operar a fábrica sem grandes
estoques amortecedores entre os sucessivos processos industriais.
Por ora, enquanto as indústrias ocidentais costumam exigir muito de seus
equipamentos e confiar demais no departamento de manutenção, embora alguns trabalhadores
das fábricas ocidentais também tomem algumas dessas providências, através do processo de
formação dos operadores mantenedores, no Japão, são os trabalhadores das fábricas que,
praticamente, cuidam das máquinas.
Desta forma, o sistema JIT se opõe, também aqui, ao sistema ocidental, que busca
superar as falhas dos equipamentos, sem previsibilidade, com novas concepções de modelos
de manutenção e estoques de segurança, ao invés de uma capacidade plena superior à
programação.
Alcançar um bom equilíbrio na linha de produção significa conseguir a utilização
plena dos trabalhadores, mantendo-os ocupados. A norma ocidental de manter os
trabalhadores ocupados traduz-se na aversão de paralisar a linha ou reduzir seu ritmo.
1.5 MÉTODO DO GERENCIAMENTO DAS RESTRIÇÕES
A Teoria das Restrições (TOC) foi concebida como uma abordagem para otimizar
sistemas. Ela é baseada no princípio de que existe uma causa comum para muitos efeitos; os
fenômenos que vemos (sintomas) são conseqüências de poucas causas raízes. Esse princípio
leva a uma visão sistêmica da empresa, ou seja, a empresa é vista como um conjunto de
elementos entre os quais há alguma relação de interdependência. Desta forma, pelo fato de
serem interligados, não se deve dar a mesma importância a todos os recursos dentro da
empresa, e sim se concentrar apenas nos poucos que apresentam impacto maior sobre o
resultado global, que são as restrições. Assim, o Gerenciamento das Restrições é um processo
de aprimoramento contínuo, baseado na gestão desses poucos recursos críticos.
A TOC teve início na década de 70, quando o físico israelense, Eliyahu M. Goldratt,
se envolveu com problemas de logística de produção. O novo enfoque proposto por Goldratt
para a programação de produção teve como base o software Optimized Production Technology
(OPT)7. Goldratt foi o responsável, desde o início, pelo desenvolvimento do novo sistema
7
Marca registrada do Scheduling Technology Group Limited, Hounslow, U.K.
40
logístico OPT e logo se convenceu de que uma programação da produção computadorizada era
somente uma pequena parte dos problemas relacionados com a operação de uma empresa de
manufatura bem sucedida. Segundo Goldratt e Fox (1989), embora desenvolvido de maneira
totalmente independente, o OPT era muito semelhante ao sistema básico de Kanban manual
japonês, daí ser descrito como Kanban computadorizado.
O OPT trouxe uma “modelagem” nova, diferente da tradicional que separava a
estrutura do produto da estrutura do processo, sendo composto dos estágios do processo
produtivo, dos materiais desde sua compra, através do processo e montagem, até finalmente
atender ao pedido do cliente. Este conceito beneficiou, em termos de manipulação de dados,
memórias requeridas no computador, além de um grande aumento da velocidade de
processamento (GOLDRATT, 1990).
Mesmo com todos os benefícios citados, o OPT sofreu a mesma limitação do Kanban
e seu uso era restrito ao ambiente de manufatura de alta repetitividade. O problema era que se
formava estoque entre duas operações, e os poucos lugares onde não existiam estoques
intermediários eram naquelas operações alimentadas por máquinas gargalo. Para solucionar
este problema foi introduzido o conceito de “parada”.
O conceito de produção parada reduziu o inventário sem prejudicar vendas, mas sua
implantação expôs o fato de que a maioria dos recursos (máquinas e operários) usados nas
fábricas que implantaram o software tinha excesso de capacidade e poucos recursos poderiam
ser usados em 100% de sua capacidade, sem causar excesso de inventário. O fato de este
fenômeno ser geral começou a exigir que a atenção se dirigisse de problemas de programação
para problemas gerais. Como resultado, deu-se o reconhecimento da contradição entre fluxo
balanceado e capacidade balanceada em um ambiente no qual existem flutuações estatísticas e
recursos dependentes.8
As regras do OPT começaram a ser formuladas com o crescimento do conhecimento
que a superioridade do software não se devia a seu algoritmo, mas, principalmente, aos
conceitos nele existente. A partir desta constatação, os gargalos passaram a adquirir real
importância na determinação do desempenho geral do negócio.
A descoberta da importância do gargalo e a lógica de programação aplicada a partir
desse raciocínio, começaram a gerar conflitos no dia-a-dia da administração da produção
baseada no OPT. As organizações continuavam de forma irracional a explorar totalmente os
recursos não restritivos; os encarregados têm dificuldade em não ativar os recursos não-
8
Esta é uma das principais hipóteses que suportam a Teoria das Restrições.
41
restritivos para obedecer a programas com eficiências abaixo de 100% e efetuar muito mais
preparações nestes recursos. Com isso, Goldratt (1990) passou a estudar as causas que
produziam esses efeitos, chegando às medidas como as pessoas eram avaliadas e ao sistema
tradicional de contabilidade de custos.
Outro passo importante foi a definição de que os gargalos são aqueles recursos que
precisam produzir todo o tempo, e, portanto deveriam ser programados linearmente,
ignorando a capacidade das não-restrições. Uma vez estipulados seus programas, todas as
outras operações das não-restrições deveriam estar programadas de tal forma (voltando no
tempo) que dessem suporte ao programa dos gargalos.
Esta divisão entre programa dos gargalos e programa dos não-gargalos representou
uma mudança da programação lógica do Kanban e agrupou os bons resultados do MRP e o da
programação finita, enquanto eliminava suas maiores deficiências. Com isto, o tempo de rodar
o programa foi drasticamente reduzido.
Os aperfeiçoamentos que se seguiram, em função da aplicação prática do OPT,
criaram uma série de princípios que constituíram o pensamento tecnológico de produção
otimizada.
Segundo Fullmann et al. (1989), Goldratt observou que, apesar do sucesso do OPT,
havia uma certa resistência na aplicação do programa. Decidiu, então, corrigir essa
dificuldade, publicando alguns livros que tratassem dos princípios básicos da Teoria das
Restrições9. Assim, em 1984, em parceria com Cox, publicou The Goal (A Meta) que conta de
maneira romanceada um caso de aplicação da TOC num ambiente de manufatura. Em
seguida, a dupla Goldratt e Fox (1989) publicou a obra, A Corrida pela Vantagem
Competitiva, que explicava claramente o método. Com o sucesso dos livros, e observando que
empresas que não utilizavam o software OPT vinham aplicando seus princípios com sucesso,
Goldratt decidiu, em finais dos anos 80, vender a empresa que comercializava seu software e
passou a se dedicar a comercializar e desenvolver a parte educativa de sua teoria.
Atualmente, a Teoria das Restrições é estudada a partir de dois campos: O Processo de
Raciocínio e os aplicativos específicos (Operações/Tambor-Pulmão-Corda, Finanças e
Medidas, Gerenciamento de Projetos e Engenharia, Distribuição e Cadeia de Suprimentos,
Marketing, Vendas, Gestão de Pessoas e Visão Viável).
9
A Teoria das Restrições consiste dos seguintes componentes inter-relacionados: (1) logística, com TPC,
gerenciamento de pulmões e estruturas de análise V-A-T; (2) processo de focalização das 5 etapas e
indicadores de desempenho do sistema; (3) processo de solução de problemas/pensamento lógico (COX III;
SPENCER, 2002).
42
O Processo de Raciocínio é a ferramenta lógica, baseada nas relações de causa-efeito
da física, criada por Goldratt (1990, 1994, 2001) para ajudar no processo de solução de
problemas.
Os aplicativos específicos citados também são baseados no Processo de Raciocínio,
porém, nestes casos, Goldratt identifica as causas raízes dos maiores problemas das referidas
áreas e propõe soluções focadas nos poucos recursos considerados como restritivos ou
críticos.
1.5.1 Processo de Aprimoramento Contínuo
Para Goldratt e Fox (1989), de fato, a única maneira de assegurar e melhorar a posição
competitiva hoje é através da instituição de um processo de aprimoramento contínuo. Daí a
necessidade de identificar claramente a área onde uma melhoria produzirá o máximo de
impacto global. O ganho de qualquer sistema que tem uma meta é governado por poucos
elementos (restrição). A restrição de um sistema é qualquer coisa que o impede de um
desempenho maior em relação a sua meta. Se um sistema de produção não tivesse nenhuma
restrição, a organização teria lucro ilimitado, como vimos anteriormente.
Toda organização é constituída com algum propósito. Assim, toda ação tomada por
qualquer área da empresa deveria ser calcada em seu impacto no propósito global. Adotando
conceitos simples e de bom senso, a TOC parte do pressuposto de que a meta de qualquer
empresa é ganhar mais dinheiro hoje e no futuro.10 Para apoiar esta meta, um sistema de
indicadores de desempenho foi desenvolvido por Goldratt (1990, 2001): ganho, inventário e
despesas operacionais.
. Ganho – taxa com a qual a organização gera dinheiro através das vendas.
. Inventário – itens comprados pela organização para revender, avaliados ao preço de
compra.
. Despesas operacionais – quantidade de dinheiro gasto para converter inventário em
ganho.
10
Esse conceito parte da premissa que as condições básicas de gestão de uma organização, tais como ética,
qualidade, segurança, atendimento às leis, entre outras, já são seguidas.
43
Esses indicadores de desempenho estabelecem um sistema de contabilidade de “caixa”
no lugar de um sistema de contabilidade de custo, voltados para a meta de fazer dinheiro hoje
e no futuro.
Por definição, cada melhoramento implica em uma mudança e, por conseguinte, deve
encontrar resistência. Podemos dizer que todo processo de aprimoramento é, por natureza, um
processo de mudança contínua. Por isso, o grau de resistência a ele pode ser muito
significativo, apesar de não ser consciente.
Goldratt (1989, 1994, 1997) estabeleceu, portanto, dois tipos de processos de
aprimoramento contínuo: processo de aprimoramento contínuo para restrições não físicas; e
processo de aprimoramento contínuo para restrições físicas.
1.5.1.1 Processo de Aprimoramento Contínuo para Restrições Não-Físicas
O processo de raciocínio da TOC é a base do processo de aprimoramento contínuo
para restrições não-físicas. O processo de raciocínio conduz a uma série de passos que
combinam causa-efeito com a intuição e experiência adquirida, para ganhar conhecimento.
Um benefício extraordinário do processo de raciocínio é que ele desenvolve
habilidades que permitem reconhecer mudanças de paradigmas. Estas ocorrem quando os
tempos mudam, enquanto regras e pressupostos, não. O processo de raciocínio deve ser usado
quando a restrição do sistema não é óbvia, o que, normalmente, acontece quando temos
restrições não físicas, interferindo na gestão de ganho da empresa, tais como: políticas,
procedimentos e bloqueios mentais.
Goldratt (2001) afirma que, para buscar um processo de aprimoramento contínuo, é
preciso responder a três perguntas: O que mudar? Para o que mudar? Como causar a
mudança?
O que mudar?
Esta questão equivale a identificar a restrição do sistema. Já que não se tem uma
evidência física, procura-se mapear para diagnosticar a situação. Desta forma, tenta-se
encontrar o problema-raiz do sistema. Esta análise pressupõe que umas poucas causas comuns
são responsáveis pelos muitos efeitos de um sistema. Assim, devem-se identificar essas
poucas causas, buscando eliminá-las e, por conseguinte, solucionar os muitos efeitos.
44
Para responder a essa pergunta, usa-se a Árvore da Realidade Atual (ARA) (SMITH;
2000; STEIN,1997). A ARA é um diagrama construído por Goldratt (1995 apud STEIN,
1997), através de conexões causa-efeito, partindo do que ele chama de efeitos indesejáveis11
(sintomas). O desafio é mapear as inter-relações de causa-efeito que une esses efeitos
indesejados até se identificar o problema-raiz (a restrição). Uma vez construído o diagrama do
ARA, é possível saber o que mudar.
Para o que mudar?
Com o diagrama do ARA, identificamos o que mudar. O problema agora é definir para
o que mudar, o que remete a políticas restritivas da organização. Antes de definir novas
políticas, é necessário entender porque essas políticas ainda existem. Normalmente, estas
políticas representam problemas crônicos das empresas, e são causadas, na grande maioria,
por conflitos.
Para definir o que está por trás do conflito, e então quebrá-lo, a TOC oferece o
Diagrama de Dispersão de Nuvem (DDN). O DDN desafia alguns pressupostos básicos sobre
a realidade da empresa e apresenta alternativas para sair do conflito. O DDN mostra apenas a
direção a ser seguida; é necessário, porém, construir uma solução definitiva para o conflito.
Esta é buscada através da Árvore de Realidade Futura (ARF). Já que a abordagem do conflito
é sistêmica, é necessário identificar ramos negativos da ARF, definidos como efeitos
colaterais das idéias propostas. Quando tais ramos são identificados, procuram-se, então, idéias
que sejam capazes de eliminar esses ramos negativos. Essas idéias irão complementar a solução
final do problema. O objetivo deste processo é tratar o problema-raiz sem criar efeitos colaterais.
Como causar a mudança?
Com a ARF concluída, a estratégia está pronta. O passo seguinte é definir como
implementar esta estratégia. Para iniciar a implantação da estratégia definida pelo ARF,
constrói-se a Árvore de Pré-Requisitos (APR). A APR é um diagrama lógico, onde são
definidos os objetivos intermediários a serem alcançados para implementar a ARF.
Em uma próxima etapa, é construída a Árvore de Transição (AT), que define as ações
a serem tomadas e, em que seqüência, permite o alcance dos objetivos intermediários da APR.
Na AT são identificadas as ações necessárias e suficientes para mudar a realidade.
11
Efeitos indesejáveis/efeitos desejáveis – ferramentas do processo de pensamento, definidas por Goldratt
(1994).
45
A aplicação das cinco etapas do processo de raciocínio (construção das árvores) requer
treinamento e experiência, não sendo um processo muito simples, nem recomendado para
solução de problemas triviais da empresa.
1.5.1.2 Processo de Aprimoramento Contínuo para Restrições Físicas
Goldratt (2001) afirma que qualquer restrição, mesmo física, é um reflexo de um
bloqueio mental. Por isso, o processo de raciocínio abordado anteriormente é a base de toda a
TOC e é usado para tratar os problemas. A partir dele, Goldratt e Cox (1997) criaram os
aplicativos da TOC para restrições físicas, a exemplo do TPC.
O aprimoramento das poucas restrições (entregas e gargalos) leva à melhoria global.
As restrições físicas podem ser exemplificadas pela capacidade das máquinas,
instalações, pessoal, caixa ou mercado. Aplicar o gerenciamento das restrições, neste caso,
consiste em examinar as cinco etapas de focalização, a seguir:
I - IDENTIFICAR a restrição do sistema;
II - EXPLORAR a restrição do sistema;
III - SUBORDINAR tudo o mais à decisão do item II;
IV- ELEVAR a restrição do sistema;
V - EVITAR A INÉRCIA. Se a restrição for quebrada, retorne a etapa I.
I-
IDENTIFICAR
a restrição do sistema
Em uma fábrica, sempre haverá um recurso que limita seu fluxo máximo, do mesmo
modo que numa corrente sempre haverá um elo mais fraco. Para aumentar o desempenho do
sistema, assim como para aumentar a resistência da corrente, é necessário identificar o elo
mais fraco, dizem Goldratt e Cox (1997).
Uma forma de identificar a restrição é através de cálculos de carga de máquina
impostos pela demanda versus capacidade de cada recurso. Outra forma, mais simples, é fazer
um passeio pela fábrica e ver onde se encontra a maior fila de espera. Também se pode
conversar com os operários e perguntar que recurso normalmente atrasa as entregas.
46
II - EXPLORAR a restrição12 do sistema
Após identificar o recurso que limita o desempenho da fábrica, é necessário tirar o
máximo dele. Qualquer minuto perdido no gargalo13 é um minuto perdido no sistema inteiro.
Como conseqüência, qualquer melhoria de produtividade, qualquer economia de hora no
gargalo aumenta o ganho de todo o sistema. Por outro lado, qualquer ganho num recurso não
gargalo é simples ilusão, miragem. Deve-se então decidir como explorar a restrição para se
obter o máximo desempenho do sistema.
Há várias formas de explorar o gargalo. Para citar algumas, enunciamos: fazer uma
programação detalhada; melhorar o mix de produtos; garantir que apenas produtos com
qualidade assegurada passarão pelo gargalo; reduzir os tempos de preparação; manter rígido
controle de manutenção corretiva e preventiva; garantir, também, um pulmão antes do
gargalo, para evitar que o recurso restritivo de capacidade14 pare por falta de material, mesmo
que algum recurso anterior a ele pare de abastecer por um certo tempo.
III - SUBORDINAR tudo o mais à decisão do item II
Todos os outros recursos devem trabalhar ao passo da restrição, nem mais nem menos.
Segundo a TOC, deve-se equilibrar o fluxo com a demanda e não com a capacidade de cada
recurso, pois isso acarreta excesso de inventário e desperdício. Os recursos não restritivos não
podem deixar faltar material para o gargalo; por outro lado, não devem trabalhar mais rápido
que a restrição, pois estariam aumentando o nível de estoque da linha.
IV - ELEVAR a restrição do sistema
Neste ponto, todos os esforços já foram feitos para explorar ao máximo a restrição
(etapa II). Ao se elevar a restrição, ao se adicionar mais e mais coisas que não se têm o
suficiente, chegará o momento em que se terá o suficiente. Às vezes, é necessário investir,
para se obter uma maior capacidade de todo o sistema, de modo a quebrar a restrição. Porém,
logo aparecerá outra. Normalmente, um gargalo é quebrado a partir de investimentos. Este é o
grande diferencial entre explorar e elevar.
12
Restrição é qualquer elemento ou fator que impede que um sistema conquiste um nível melhor de desempenho
no que diz respeito a sua meta (COX III; SPENCER, 2002).
13
Gargalo existe sempre que uma demanda é alocada em um recurso com capacidade igual ou menor à demanda
dele solicitada (STEIN, 1997).
14
Recurso restritivo de capacidade é o recurso/operação que tem menor capacidade do que a demanda de
mercado. Por isso, determina o máximo fluxo através de toda ou da maior parte da malha produtiva –
geralmente o RRC é um só (STEIN, 1997).
47
V - EVITAR A INÉRCIA. Se a restrição for quebrada, retorne a etapa I
Não deixe que a inércia se torne a restrição do sistema. Sem esse passo, a inércia
poderia dominar. Poderia continuar a se programar a produção como se a restrição do sistema
não tivesse sido mudada e o aprimoramento do processo cessaria. Segundo Goldratt (2001),
em muitas empresas analisadas, não foram encontradas restrições físicas, e, sim, restrições
políticas. Estas restrições, que em algum tempo foram justificadas, se mantiveram, a exemplo de
normas, procedimentos e políticas.
1.5.2 Metodologia Tambor-Pulmão-Corda com Supermercado & Gerenciamento
de Pulmão
Tambor-Pulmão-Corda (TPC) é o aplicativo da TOC desenvolvido para se obter uma
programação de produção suave e realista, e para maximizar e gerenciar a produtividade da
manufatura numa perspectiva global. Ele foi criado baseado nas 5 etapas do processo de
aprimoramento contínuo da TOC para as restrições físicas.
O Supermercado é uma solução proposta pela TOC para problemas de distribuição.
Esta solução é aplicável nos ambientes onde o tempo de resposta para disponibilizar o
produto é maior do que o tempo que o cliente admite esperar.
Gerenciamento de Pulmão é parte do método TPC. Consiste das ferramentas de
controle e aprimoramento contínuo do aplicativo.
TAMBOR – O Programa de Produção para a Restrição
De acordo com a TOC, todo e qualquer sistema pode produzir tanto quanto a
capacidade de seu recurso restritivo. Para Smith (2000), Goldratt se refere ao recurso
restritivo de capacidade (RRC) como o Tambor porque o RRC determina o passo ou o ritmo
da batida a ser seguido pelo resto dos recursos operacionais. Isto significa que todos os outros
recursos produtivos são sincronizados com a programação da restrição.
Segundo a autora citada, existem dois critérios para se estabelecer uma boa
programação: a programação deve ser realista; e a programação deve ser imune a uma
razoável quantidade de interrupções.
48
Pela TOC, para se ter uma programação realista, é necessário, inicialmente, identificar
a restrição do sistema. Por definição, a data de entrega do pedido do cliente é a primeira
restrição. A programação deve subordinar todos os recursos de modo a atender a data de
entrega do pedido. O objetivo da programação é garantir as datas de entrega dos pedidos e
explorar o RRC, aumentando o ganho. A decisão de subordinar o processo da manufatura
para a exploração dos embarques de acordo com as datas do cliente requer retornar para o
primeiro passo da TOC – identificar a restrição do processo produtivo, o RRC, o Tambor.
Uma vez identificado o tambor e o passo de todos os recursos subordinados à cadência
de sua batida, uma data realista pode ser dada ao cliente. O Tambor é uma programação
detalhada, com os itens a serem produzidos, suas quantidades, as datas e os horários de
começo e fim. O ponto de partida é a demanda do mercado, devendo ser entregue o que o
mercado quer, na quantidade e data desejadas.
Se o ritmo do tambor determina o ritmo de toda a operação da manufatura, a
exploração do tambor permite a exploração da operação da manufatura. Assumindo que a
programação está realista com a capacidade do tambor, as datas de entrega devem ser
atendidas.
O tambor deve operar 100% do tempo. Para evitar interrupções, é recomendável a
criação do pulmão, garantindo a existência permanente de material à frente do RRC. Outra
recomendação é limitar às vendas de 97 a 98% da capacidade do tambor, para permitir que,
caso haja uma interrupção deste, ainda exista uma possibilidade de recuperação. Com isso, as
datas de entrega são preservadas.
O PULMÃO
O Pulmão é o mecanismo de tempo usado para proteger a restrição contra
interrupções. Essa proteção é criada liberando o material no processo para que chegue à frente
da restrição com alguma antecedência de tempo. Essa antecedência de tempo é que a TOC
chama de Pulmão.
O pulmão tem a finalidade de manter a restrição ocupada. Sempre que possível, é
expresso em tempo – é o estoque por tempo de segurança, ao invés de quantidade de peças.
Existem três áreas que requerem proteção: expedição, para assegurar que os produtos
são entregues ao cliente na data; restrição, para assegurar a máxima utilização do tempo do
recurso e conseqüentemente do ganho; outras operações de montagem, nas quais uma perna
49
do processo é alimentada pela restrição e a outra por uma não restrição. As partes que passam
pela restrição não devem aguardar partes que não passem pela restrição.
Tamanho do Pulmão
O tamanho do pulmão apresenta dois riscos. Pulmões pequenos podem fazer o RRC
parar, reduzindo o ganho de todo o sistema. Pulmões grandes aumentam o inventário, o lead
time, as despesas operacionais e reduzem o caixa. Óbvio que o primeiro tipo de risco é o de
maior custo para a organização e o mais danoso.
Se todas as partes chegam consistentemente com muita antecedência, o pulmão está
superavaliado e poderá ser reduzido com segurança. Se as partes chegam consistentemente
atrasadas, o pulmão deve ser aumentado. O tamanho do pulmão depende da flutuação
estatística do processo e da capacidade protetiva dos recursos não restritivos.
O gerenciamento do pulmão permite quantificar e identificar sistematicamente as
causas das interrupções no processo. Isto é importante para garantir as programações da
restrição e da entrega dos pedidos. É necessário se certificar de que as peças vão chegar a seus
destinos, conforme programado.
Toda peça passa por um ou mais pulmões. Logo, para controlar a produção, basta
verificar se as peças estão chegando nos pulmões conforme programado. Se houver alguma
falta, ou seja, se uma peça programada para estar em tal lugar não estiver por lá, será criado o
chamado “buraco no pulmão”.
Mantendo-se um controle sobre os buracos nos pulmões, é possível prever os
problemas que acarretariam a interrupção da programação. Assim, pode-se resolver o
problema antes que ele prejudique a produção. Não se deve esquecer que os pulmões
protegem o gargalo, ou seja, as entregas e o ganho.
Os buracos nos pulmões são avisos de que algum problema está acontecendo. Esses
buracos são causados por flutuações estatísticas nos processos. Então, sempre que ocorrer um
buraco significativo, deve-se registrar e identificar o recurso que está causando esse buraco e a
causa.
Desta forma, o processo é melhorado, diminuindo as flutuações estatísticas
responsáveis pelo maior número de buracos. No TPC, ao invés de melhorar o desempenho de
todos os recursos, apenas a restrição e os recursos não restritivos que causam buracos nos
pulmões é que devem ser aprimorados.
Quando o processo é melhorado, furos nos pulmões irão desaparecer, permitindo que o
tamanho dos pulmões seja reduzido consistentemente, decrescendo o ciclo de processo e o
50
inventário de produto em processo. Este é um processo de melhoria contínua e permite um
aumento do retorno sobre o investimento.
Os objetivos do gerenciamento dos pulmões são, resumidamente:
a) planejar agilização quando a programação de uma restrição estiver com algum
risco;
b) acionar agilização quando a programação de uma restrição estiver em alto risco;
c) recomendar ações para aumentar/diminuir pulmões;
d) recomendar ações de melhoria de médio prazo;
e) identificar a existência de novos RR interagindo com as restrições (perda de
capacidade protetiva).
O Supermercado
O supermercado é um inventário colocado no lugar certo e na quantidade certa para
atender aos clientes que não estão dispostos a esperar por todo o tempo de processamento do
produto.
A quantidade de peças neste inventário deve ser proporcional ao consumo. Outro item
importante é o tempo de reabastecimento, que é tão importante quanto o nível de consumo. O
supermercado é calculado a partir da média de consumo, do tempo de reabastecimento e de
seus respectivos desvios.
Estabelecido o target, sempre que houver uma venda que coloque o inventário abaixo
deste, lança-se uma corda ao RRC, autorizando produção de lote equivalente.
A CORDA
Este é o mecanismo de sincronização dos outros recursos e consiste na programação
de liberação de matéria-prima de acordo com a programação da restrição. O material é
liberado para as operações iniciais na mesma proporção que ocorre a produção na restrição. A
programação de liberação de material, porém, deve fornecer um pulmão de tempo
(antecedência) entre a liberação de material e a restrição.
A corda deve prender o recurso restritivo de capacidade à operação inicial. O
comprimento da corda é o tempo requerido para manter o pulmão cheio, mais o tempo de
processamento até a chegada no início do pulmão.
O excesso de capacidade que todos os recursos têm em relação ao RRC é chamado de
capacidade protetiva. Controlando os buracos dos pulmões, pode-se obter com acurácia uma
51
figura da capacidade protetiva de toda a planta sem um estudo mais profundo. Isto é
importante por vários motivos:
a) o recurso com a menor capacidade protetiva é aquele em que o gargalo irá se mover
se o atual RRC for permanentemente elevado;
b) monitorando a capacidade protetiva nos recursos com problemas, pode-se determinar
quantas preparações podem ser programadas ou quão pequenos podem ser os lotes nos não
gargalos, antes de ser criada uma flutuação indesejável do gargalo;
c) prover a habilidade de focar e priorizar os processos de melhoria nas operações não
gargalo;
d) prover um método para priorizar o processo de subordinação dos recursos gargalos
depois dos RRC terem sido supridos;
e) prover um método de estimativa de capacidade protetiva dos recursos não restritivos
de capacidade que possa ser vendido em um mercado alvo de um recurso não restritivo de
capacidade. Isto é muito importante se a companhia deseja identificar excesso de capacidade
de um mercado alvo para um produto de um recurso não restritivo de capacidade, visando
aumentar a geração de caixa. Este mercado pode ser explorado para expansão se não erodir a
capacidade protetiva e arriscar a performance de entrega do gargalo. Há de ser ter o cuidado de
não vender em excesso um produto de uma restrição não restritiva de capacidade, criando uma
flutuação do gargalo e arriscando o pulmão do gargalo e, com isso, o ganho em última instância.
A capacidade protetiva necessária não é insignificante. Por exemplo, se temos uma
capacidade protetiva de 5% apenas, quando ocorrer qualquer interrupção, o pulmão será
consumido no ritmo do trabalho do gargalo (100%). Entretanto, com 5% de capacidade
protetiva, o inventário leva 20 vezes mais tempo para encher do que para ser drenado. Durante
este tempo, o recurso gargalo fica sem a devida proteção.
1.5.3 Classificação dos tipos de fluxo de produção segundo a TOC
A primeira etapa para conceder uma visão sistêmica do processo de produção é o
desenvolvimento de uma estrutura lógica. As plantas industriais, com diferentes tipos de
fluxo, apresentam diferentes efeitos indesejáveis quando operadas sob os paradigmas
52
tradicionais do “ótimo local”. A implementação de uma nova logística embasada em
paradigmas voltados ao “ótimo global” deve levar em conta essas diferenças.
A análiseV-A-T15 é uma abordagem que quebra as barreiras tradicionais e percebe a
organização como uma interação entre produtos e processos. Enxergando a organização a
partir dessa visão sistêmica, resultante da interação de recursos e processos, essas três
categorias gerais de estruturas ou categorias de produção emergem. Entretanto cada estrutura
exige uma abordagem um pouco diferente para o gerenciamento de planejamento e controle.
O projeto de linhas tradicionais focaliza o balanceamento das capacidades de produção
de todos os centros de trabalho, buscando a máxima eficiência local. Para Goldratt e Fox
(1989) e Goldratt e Cox (1997), devido ao fenômeno do acúmulo das flutuações estatísticas
em recursos dependentes, a capacidade teórica deste modelo raramente é atingida. Ele propõe
o balanceamento do fluxo e capacidade desbalanceada, identificando a restrição que garante a
entrega, e reconhece a importância da ociosidade nos recursos não restritivos, responsáveis
por garantir o pulmão da restrição de modo a manter a restrição sempre com trabalho.
Na seqüência, descreveremos algumas características de cada um dos tipos de fluxo
citados, atendo-nos, com maior profundidade, no fluxo de produção tipo “T”, por ser este o
mais característico das plantas de fabricação de eletrodos de grafite.
Fluxo de Produção V
A característica predominante das plantas “V” é a presença de pontos de divergência.
Esses pontos de divergência de fluxo trazem como conseqüência as seguintes especificidades:
a partir de certa operação, o produto é transformado em vários produtos diferentes, nas
operações seguintes; a quantidade de produtos acabados é muito maior do que a quantidade de
materiais a serem processados. Normalmente, possui uma operação divergente bem no início
da estrutura o que impede a modificação de um pedido, já que na divergência de fluxo,
normalmente, ocorre a alteração do produto.
Neste tipo de fluxo, constantemente, produtos diferentes ocupam os mesmos recursos.
Basicamente, os produtos são processados da mesma forma e, geralmente, são utilizados
equipamentos especiais e ou de alto investimento em alguns processos de produção.
15
Goldratt (1992, 2001) introduziu a análise V-A-T em seus primeiros workshops na Creative Output, Inc. Esta
análise trata do fluxo da produção, considerando os produtos e seus processos. Portanto, é uma abordagem
que percebe a organização como uma interação entre produtos e processos
53
Os problemas existentes nas plantas “V” decorrem de produção maior que a
necessária, de itens errados, devido aos lotes grandes demais. Como conseqüência, temos:
estoques de produtos acabados muito grandes; baixo desempenho de entregas; gerentes de
produção preocupados com a mudança aparentemente freqüente da demanda; gerentes de
marketing se queixando da falta de resposta da operação de manufatura; e conflitos
interdepartamentais na produção.
Como exemplo de estrutura lógica de fabricação tipo “V”, podemos citar: as indústrias
têxteis, indústrias de papel, siderúrgicas, mineração, as refinarias de petróleo e as fábricas de
vidro.
Fluxo de Produção A
As plantas tipo “A” apresentam pontos de convergência de fluxo (montagens), em que
dois ou mais componentes são montados para formar uma peça. A quantidade de
componentes comprados e de materiais a serem processados é maior que a quantidade de
produtos acabados.
As características gerais de uma estrutura tipo “A” são: vários níveis de submontagem
convergem numa montagem final; os componentes são tipicamente únicos, isto é, não há
muita intercambialidade; existem muitos roteiros de produção; e as máquinas e ferramentas
usadas no processo de manufatura tendem a ser universais, em contraste com as das plantas
“V”, que são muito especializadas.
Os problemas que geralmente ocorrem neste tipo de estrutura decorrem de lotes
excessivamente grandes, resultando em: uso desnecessário dos recursos, causando excesso de
alguns componentes e falta de outros na montagem; grande quantidade de materiais em fila,
isto é, alto inventário no processo; horas extras, não planejadas, em demasia; gargalos de
produção parecem percorrer toda a fábrica; e aparente falta de controle gerencial sobre as
atividades da fábrica.
Como exemplo de estrutura lógica de fabricação tipo “A”, podemos citar as fábricas
de equipamentos especializados como geradores, motores, conjuntos mecânicos e aeronaves.
Fluxo de Produção T
Antes de falarmos da estrutura tipo “T”, definiremos a estrutura tipo “I”, que poderia
ser considerada como parte de um fluxo tipo “T”. Desta forma, estaremos cobrindo os
principais tipos de estrutura lógica de fluxo de produção dos eletrodos de grafite.
54
As características predominantes de uma planta “I” é o fluxo linear de operações
sucessivas. Geralmente, há grande esforço para balancear capacidade. Esse tipo de
manufatura produz grande quantidade dos mesmos produtos, pode ter um alto nível de
automação e é comum a reclamação de que os gargalos são “mutantes”.
Os principais problemas desse tipo de estrutura são: pilhas de inventários entre os
diversos estágios de produção; produção de grandes lotes para minimizar custo por peça,
resultando em fluxo por “ondas de produção” ao longo da fábrica; os recursos das operações
da parte final do fluxo são mais ociosos e, portanto, procuram por trabalho ou reduzem suas
eficiências para “esticar” o trabalho; e como resultado temos baixa eficiência, alto inventário,
muitas horas extras e baixo desempenho de entregas.
A característica mais importante do fluxo tipo “T” é que os produtos finais são
montados utilizando certo número de componentes, comuns para vários produtos finais. Isto
ocorre usualmente em fábricas que produzem famílias de produtos que possuem várias opções
de diferentes variedades de acabamento final ou embalagens. Como resultado, o número de
itens finais pode exceder o número de peças componentes. Assim, o diagrama de fluxo inicia
com o “I” e expande-se, no topo, tomando a forma da letra “T”.
Como exemplo, podemos citar os casos de montagem contra pedido, em que os
tempos de entrega requeridos são curtos, se comparados com os tempos de compra dos
componentes e de processamento. A demanda individual de cada produto é de difícil previsão.
Como resultado, os componentes necessários para produzir os vários produtos deveriam ser
programados e estocados próximo à montagem final. A interação entre os componentes
disponíveis, produtos requeridos e recursos limitados dominam o ambiente de fabricação de
uma fábrica tipo “T”.
Os problemas que decorrem deste tipo de fluxo são: material liberado para uma certa
ordem de fabricação tem pouca chance de ser usado naquela ordem, devido às várias direções
possíveis de fluxo; é comum a chegada e acúmulo de material errado nas operações de
submontagem e de montagem; a montagem final acaba sendo feita com os componentes
disponíveis; o lead-time das linhas de fluxo aumenta, investindo-se em capacidade para
agilizar o processo; fabricação e montagem são tratados separadamente; desempenho de
entregas é baixo, muita hora-extra e alto inventário em processo.
Implementar o TPC em uma estrutura lógica tipo “I” e “T” significa: enfocar
primeiramente as operações do fluxo final, sincronizando as montagens às demandas; puxar
cordas do programa de entregas para o programa do recurso restritivo (se for o caso) e deste
55
para o programa de liberação de materiais; necessário criar pulmões de Expedição e do RRC;
programações resultantes são de entregas, do RRC e da liberação de materiais.
1.6 COMPARAÇÃO ENTRE OS MÉTODOS TRADICIONAL, MRP’s, JIT e GR
Há uma preocupação em se determinar qual o sistema de produção “ótimo” para
determinada manufatura. Entretanto, o que se verifica na prática é que as empresas tendem a
empregar, consciente ou inconscientemente, uma combinação de métodos de planejamento e
controle da produção, sendo influenciada pelos indicadores de desempenho e pela estratégia
de administração do negócio.
Como vimos anteriormente, cada um dos métodos estudados têm características
próprias, com vantagens e desvantagens. Isto, porém, não significa que são excludentes, muito
pelo contrário, encontramos entre eles várias complementaridades.
O método tradicional, apesar de considerar os processos da manufatura de modo
independente, descontínuo, já trazia, desde Ford, a preocupação com a eliminação do
desperdício, do custo e da qualidade intrínseca do produto e materiais. Em empresas que
ainda adotam este método, focado no “ótimo” local dos centros de trabalho, é possível aplicar
ferramentas de MRP e JIT, obtendo melhorias significativas nos resultados da manufatura.
Por outro lado, este método tem o inconveniente de produzir grandes lotes, trabalhar
com capacidades balanceadas, admitindo estoques de segurança para prevenir desvios de
qualidade e operação, com atrasos regulares nas entregas, o que, nos dias de hoje, representa
custos significativos.
Os métodos MRP´s são utilizados por todos os métodos estudados, com fins
específicos, o que faz alguns autores defini-los como ferramentas de programação e
reprogramação. Interessante mencionar que o que faz do MRP um sistema mais flexível e
utilizado por todos os outros métodos de manufatura, é também o que responde por sua maior
desvantagem como método de gestão de manufatura. O MRP aceita os valores atuais dos
parâmetros de planejamento, como lead-time e tamanho de lote, não importam quais sejam. A
partir daí, imediatamente, ele gera informações sobre prioridades e planejamento de
capacidade, quaisquer que sejam os parâmetros de planejamento. Daí ele ser bastante
utilizado na execução dos Planos de Produção e no planejamento das necessidades de
materiais, mas essa falta de sensibilidade ao nível de fábrica, processos, qualidade e mão-de-
56
obra é criticada no método de gestão de manufatura, sendo considerado, às vezes, como um
sistema de informação paralelo à gestão da produção.
Para Fullmann et al. (1989), dois fatores importantes degradam a execução dos
programas MRP, entre eles a confiabilidade do processo de manufatura e a validade dos
programas. A solução para o problema passa por aperfeiçoar a confiabilidade do processo e a
validade do programa, incluindo pontos que são muito fortes no JIT. Contudo, os enfoques
trataram os sintomas e ignoraram o mal. A melhoria da lógica de programação ignorou o
óbvio e agravou o problema. Foram estabelecidos esquemas de controle para permitir os
refugos, as quebras e os materiais em desacordo. Essas concessões, geralmente, criam
inventário desnecessário, aumentam o tempo de espera e consomem os recursos escassos que
poderiam ser usados para gerar lucros e não desperdício.
O JIT é o método que mais trabalha no chão de fábrica. Baseado na melhoria contínua
de todos os processos e na total eliminação do desperdício, através da correção de problemas
a partir de sua origem, este método desenvolve várias técnicas de gestão de manufatura, tais
como: Kanban, troca rápida de ferramentas, qualidade total, trabalho em equipe e manutenção
produtiva total. Essas técnicas podem ser utilizadas em todos os demais processos estudados
neste trabalho.
Por outro lado, o JIT sugere produção homogênea, sem picos e, para isso, sugere
capacidade extra disponível em todos os centros de trabalho, principalmente na montagem.
Embora isto possa ser visto como um contra-senso (desperdício) dentro da proposta de
mínimo inventário entre os centros de trabalho e o fluxo uniforme, parece ser bastante lógico.
O alto foco do JIT e Kanban com o chão de fábrica permite que as informações,
programações e prioridades do dia-a-dia sejam tratadas a partir das trocas dos cartões. Isto faz
com que o MRP seja uma ferramenta de grande utilidade para o JIT no desenvolvimento dos
planos de produção, planos mestre de produção e nas informações gerenciais.
Tanto o GR como o JIT consideram o processo de produção como contínuo. O GR
reforça alguns conflitos entre a produção e a contabilidade, conflitos estes também observados
dentro da filosofia JIT, onde o Kanban ignora a contabilidade de custos.
Geralmente, o GR utiliza o MRP II para gerar o plano de produção com informações
externas de consumo e da capacidade de fornecimento, explodindo a lista de materiais,
garantindo a entrada diária de materiais e componentes com o sistema existente. Embora o
GR tenha muitas semelhanças com o MRP em termos de planejamento, usando até mesmo
seu banco de dados, ele é mais parecido com o JIT do ponto de vista da sincronização,
tamanho de lote, redução de inventário e tempos de preparação, diferenciando-se dos dois
57
quando considera a restrição, o ponto a ser explorado para se ganhar mais dinheiro. São
possíveis
restrições:
mercado;
disponibilidade
de
materiais;
capacidade
limitada;
procedimentos e políticas de gestão.
Diante do exposto, entendemos que não há, geralmente, um método de produção
“ótimo”, e sim uma combinação apropriada de componentes de vários métodos, de modo a
criar um sistema de gerenciamento de produção que traga o maior ganho para a organização.
CAPÍTULO 2
METODOLOGIA
A estratégica metodológica utilizada nessa pesquisa é a de estudo de caso. Para Stake
(1994 apud ROESCH, 1999), o estudo de caso não é um método, mas a escolha de um objeto
a ser estudado. Yin (1994 apud ROESCH, 1999) é um dos autores que mais tem divulgado a
estratégia do estudo de caso como forma de pesquisa – aponta a tendência ao uso de estudos
de caso como estratégia de pesquisa nas escolas de Administração.
Segundo Roesch (1999), o estudo de caso é caracterizado por permitir o estudo de
fenômenos em profundidade dentro de seu contexto; é especialmente adequado ao estudo de
processos e explora fenômenos com base em vários ângulos. Essas características do estudo
de caso estão bastante alinhadas com o objeto deste estudo, considerando que, a partir de
estudos teóricos das diversas metodologias de gestão da manufatura, foi desenvolvido um
modelo teórico de programação de produção que, posteriormente, viria a ser implementado,
concretamente, nas fábricas da Graftech situadas em Candeias e Monterrey.
Conforme Roesch (1999, p.208):
A necessidade de pesquisa de campo em Administração de Produção é defendida
por McClutcheon & Meredith (1993), que argumentam que o conhecimento de
como funcionam os sistemas operacionais pode ser consideravelmente enriquecido
pelo contato com as condições do “mundo real”, as quais os modelos em
administração operacional pretendem descrever. O desenvolvimento de novos
sistemas, como o just in time e a gestão de qualidade e tentativas de sua
implementação, mostraram haver um hiato entre o que os acadêmicos estavam
supondo e as condições reais de operações. É preciso desenvolver teorias melhores e
mais completas sobre tais sistemas, consideram os autores, e uma forma primordial
de desenvolver teorias de base é por meio da pesquisa de campo empírica.
59
Segundo Patton (1990 apud COX III; SPENCER, 2002, p.54): “[...] os estudos de
casos são particularmente valiosos quando a avaliação tem o objetivo de capturar diferenças
individuais ou variações únicas a partir de um programa continuado em relação ao outro, ou a
partir de um programa de experiência para outro.” Também comparamos os resultados
obtidos entre as plantas, já que, como visto, as mesmas podem ser consideradas como grupos
semelhantes, com projetos e processos semelhantes, produzindo os mesmos produtos e com as
mesmas diretrizes de gestão.
Desta forma, estaremos buscando responder à questão-problema a seguir, visando
contribuir para o avanço de conhecimento na área, avaliando a lacuna entre a teoria e a prática
de implementação do projeto, podendo oferecer alternativas de políticas que estreitem essa
lacuna no contexto concreto.
A metodologia TPC com Supermercado para planejamento e programação da
produção de eletrodos de grafite está implementada e operando nas plantas de Candeias e
Monterrrey, conforme projeto-piloto desenvolvido pela Graftech em 2000?
As respostas à pergunta formulada neste projeto de pesquisa serão baseadas,
principalmente, nos resultados obtidos na análise de dois instrumentos de coleta de dados,
mostrados a seguir, complementados por informações de banco de dados, observações e
procedimentos da Graftech contidos no Relatório de Atualização do Status da Aplicação do
TPC.
Este relatório foi elaborado pela corporação, no sentido de acompanhar a
implementação do TPC nas diversas plantas. O relatório foi distribuído juntamente com uma
pesquisa detalhada e auto-explicativa, visando o preenchimento mais uniforme por parte das
plantas. Sessões de conferência por telefone foram realizadas com todas as plantas, antes do
preenchimento dos itens constantes do referido relatório, visando dirimir dúvidas e obter o
preenchimento da forma mais uniforme possível. Esse relatório foi estabelecido em 2003.
Tinha freqüência mensal e as plantas, apesar de receberem as atualizações das demais, não
estabeleceram nenhuma comunicação entre si. Durante os anos de 2003 e 2004, as
informações seguiram o fluxo planta-corporação-planta, sem troca de experiências. As
atualizações mensais eram emitidas juntamente com um plano de ação para atingir os níveis
de implementação total dos requisitos. Foi estabelecido também que esses planos deveriam
prever a total implementação do projeto até dez./2004. A utilização desse relatório se justifica
por se tratar de uma auto-avaliação do status da implementação do TPC, elaborada pelo
respectivo líder de Supply Chain local, com a anuência do Gerente Geral das respectivas
unidades.
60
A referência usada para a elaboração do citado relatório e respectivas instruções de
preenchimento foi o roteiro constante da obra de Lepore e Cohen (1999). Nesse período, o
próprio Lepore foi consultor de TOC1 da organização, com uma das responsabilidades de
orientar na implementação do TPC nas plantas. O livro usado como referência identifica o que
há de comum entre as teorias de Deming (Theory Of Profounf Knowledge) e Dr. Goldratt
(Theory Of Constraints). Juntos, Lepore e Cohen (1999) desenvolveram um processo de 10
estágios, chamado The Decalogue, que, ao serem alcançados, levariam as empresas ao
crescimento, já que as duas teorias, para eles, são voltadas para a Administração e ambas
procuram as causas raízes dos problemas, que são a origem do processo de melhoria contínua.
Esta auto-avaliação era emitida para a corporação com o status do nível de
atendimento ranqueado de 1 a 10. Também era anexado o plano de ação com cronograma de
previsão de atendimento das pendências. A auto-avaliação das duas plantas, no final de 2004,
será instrumento de análise de resultado do projeto e será comparado com os dados coletados
por outros instrumentos mencionados adiante.
Desta forma, foram desenvolvidas as instruções detalhadas no Anexo A, buscando
estabelecer um processo de auto-avaliação passo a passo da implementação do modelo TPC
com Supermercado nas plantas de Candeias e Monterrey.
O segundo instrumento qualitativo de coleta de dados de nossa pesquisa é constituído
de um Roteiro de Visita de Avaliação da implementação do TPC nas plantas de Candeias e
Monterrey. Foi elaborado pelo responsável mundial pela implementação de Gerenciamento de
Mudanças, que visitou as plantas de Monterrey e Salvador no início de 2005. Da mesma
forma que o processo anterior, buscando manter uniformidade na avaliação, foram utilizados
o mesmo instrumento e os mesmos avaliadores. Os tópicos foram enviados previamente para
as plantas tomarem conhecimento. O trabalho foi realizado com funcionários-chave do
processo, incluindo, no mínimo, o responsável pelo planejamento e programação da produção
e o Gerente Geral das unidades. O Relatório da Visita de Avaliação foi elaborado e enviado
de volta para as plantas revisarem e verificarem as observações.
O resultado do trabalho da Visita de Avaliação foi apresentado em um Relatório Final.
Dele destacamos os itens relacionados a seguir, que farão parte da análise desenvolvida neste
estudo de caso.
1
TOC – Theory Of Constraints – Teoria das Restrições desenvolvida por Eliyahu M. Goldratt.
61
ITENS DO ROTEIRO DA VISITA DE AVALIAÇÃO
Identificação do Gargalo
Programação do Gargalo
Estimativa de Tempos de Processamento & Pulmões
Desenvolvimento do Sistema de Sinal
Amarração das Cordas
Implementação do Gerenciamento de Pulmões
Implementação dos Indicadores
Utilização do Gargalo
Vendas dólar dia
Portão de velocidade do gargalo
Estoque de Segurança
Como referencial teórico-prático, foram utilizados todos os trabalhos e estudos
desenvolvidos pelo time de Gestão de Produção e Consultores da Delloite & Touche durante o
desenvolvimento do projeto-piloto nos Estados Unidos. Também recorremos a informações
gerais do banco de dados das plantas e da Corporação, referentes aos anos de 2001, 2002,
2003 e 2004, que ajudaram na análise de causa-efeito dos problemas enfrentados na
implementação do modelo TPC com Supermercado, tais como: capacidades por departamento
e por Planta; volume de vendas por Planta; volume de vendas da Empresa por ano; produção
por Planta por ano; produção total da Empresa por ano; inventário por Planta; inventário total
da Empresa; previsão de vendas por ano; lead-time por medida por ano.
Todos os dados coletados foram utilizados para avaliar a implementação do projeto
individualmente, em cada planta, bem como para comparações entre as mesmas.
CAPÍTULO 3
FABRICAÇÃO DE ELETRODOS DE GRAFITE –
PROCESSO PRODUTIVO E MODELO PILOTO
DESENVOLVIDO PARA APLICAÇÃO NAS PLANTAS
DA GRAFTECH LTD.
3.1 PROCESSO PRODUTIVO DE ELETRODOS DE GRAFITE
O processo típico de fabricação de eletrodos de grafite é bem conhecido no mundo
científico e consiste das seguintes etapas:
MME – Moagem, mistura e extrusão
Cozimento
Impregnação
Recozimento
Grafitação
Usinagem / Embalagem
Na etapa de MME, as partículas de coque calcinado de petróleo e breu de alcatrão de
hulha são peneiradas, britadas e pesadas em forma de lotes, de acordo com formulação
estabelecida. Estes lotes são aquecidos e misturados a cerca de 150º C e então transferidos
para resfriadores que, através do ar, abaixam essa temperatura para cerca de 100º C. Nesta
temperatura, os lotes são transferidos para uma prensa extrusora, obtendo-se, assim, os
63
eletrodos “verdes”. Estes são enviados para o estoque, aguardando a próxima etapa, conhecida
como Cozimento.
No Cozimento, os eletrodos “verdes” são acondicionados em cilindros metálicos, de
diâmetro mais largo que os eletrodos cerca de 50 a 100mm, os quais são totalmente
preenchidos com coque metalúrgico, para evitar deformações nos eletrodos durante o
aquecimento. O Cozimento é realizado em fornos capazes de elevar a temperatura das peças a
cerca de 850º C, em ciclos de aquecimento totalmente controlados. O objetivo deste processo
é eliminar os voláteis do breu de alcatrão de hulha, coqueificando este material, formando
assim o eletrodo cozido, que é constituído basicamente de carbono amorfo. Os eletrodos
cozidos são enviados para o estoque, aguardando a próxima etapa, conhecida como
Impregnação.
De modo a melhorar as características mecânicas dos eletrodos cozidos, estes são
submetidos ao processo de Impregnação, que consiste em colocar as peças em um tanque de
pressão cheio de breu de impregnação. Desta forma, os eletrodos têm um ganho de peso de
cerca de 10%, aumentado a densidade e adquirindo maior resistência mecânica. Os eletrodos
impregnados são enviados para estoque, aguardando a próxima etapa conhecida como
Recozimento.
O processo de Recozimento visa eliminar os voláteis contidos no breu impregnante e
consiste de um processo rápido de elevação de temperatura dos eletrodos impregnados até
cerca de 800º C. Os eletrodos recozidos são transferidos mais uma vez para o estoque,
aguardando a próxima etapa, conhecida como grafitação.
No processo de grafitação, os eletrodos recozidos são colocados em fornos elétricos
que elevam a temperatura até cerca de 3000º C, alterando a estrutura cristalina do carbono
amorfo para grafite. Mais uma vez, os eletrodos, agora grafitados, são transferidos para o
estoque, aguardando a próxima etapa, conhecida como Usinagem/Embalagem.
Finalmente, os eletrodos grafitados são usinados no corpo e face, fazendo-se também
os soquetes nas duas extremidades. Estas extremidades irão levar os niples de conexão,
produtos fabricados seguindo o mesmo processo dos eletrodos, com adição de mais uma
impregnação e um posterior cozimento. Os eletrodos de grafite com o niple conectado em
uma das extremidades são embalados e, pela última vez, transferidos para o estoque até o dia
do embarque. Para ilustrar, expomos, a seguir, fotografias que exibem eletrodos com niples e
niples.
64
FOTO 1 - ELETRODOS DE GRAFITA
FOTO 2 - PINOS DE CONEXÃO OU NIPPLES
3.2 MÉTODO TAMBOR-PULMÃO-CORDA COM GERENCIAMENTO DE PULMÕES E
SUPERMERCADO DESENVOLVIDO PARA APLICAÇÃO NAS PLANTAS DA
GRAFTECH
Tambor-Pulmão-Corda é uma metodologia de gestão da programação da manufatura.
O Tambor é o recurso restritivo de capacidade que estabelece o ritmo de toda a fábrica. O
Pulmão é o mecanismo de tempo capaz de proteger as restrições que são vulneráveis aos
problemas associados com as flutuações estatísticas1.
Em vez de colocarmos o inventário em todas as operações, o que aumenta o lead-time,
os pulmões são colocados apenas em locais estratégicos, relativos a recursos restritivos
específicos. Sincronizando o tempo que libera a entrada de material na operação, com um
determinado pulmão em tempo (comprimento da corda) à frente da programação do tambor,
os produtos são puxados através dos processos. Isso sincroniza toda a operação ao ritmo do
tambor, de forma suave e rápida, fazendo com que os produtos fluam pelos processos das
operações de manufatura. Ou seja, tecnicamente, a Corda é igual à data da programação da
restrição menos o tempo do pulmão da mesma.
A técnica de Gerenciamento de Pulmão é usada para gerenciar a quantidade de
proteção necessária para os Recursos Restritivos de Capacidade (RRC) e para controlar os
1
Flutuações Estatísticas são decorrentes de quebra de equipamentos, mudanças de Programação, ajustes de
máquinas, falta de material, paradas não programadas, entre outros.
65
Recursos Restritivos dentro da planta. Essa técnica também faz parte do processo de melhoria
contínua, no sentido de reduzir lead-times e de aumentar capacidade.
Os pulmões têm o objetivo de proteger a operação contra Murphy2. Por isso, é preciso
encontrar uma maneira sistemática de saber quando e que ajustes devem ser feitos na
programação, de forma a manter o tambor no ritmo da demanda. Este acompanhamento é
mais importante do que manter cada departamento operando com eficiência máxima.
3.3 PROJETO PILOTO
Como exposto na Introdução, o Projeto Piloto, desenvolvido pelo grupo de Gestão de
Produção, buscava implementar um modelo de gestão de planejamento e programação da
manufatura que maximizasse a velocidade de cada produto em cada fábrica, assegurando o
atendimento às exigências do cliente através de: redução do tempo de processo (lead-time);
redução dos tempos de mudanças de processos; redução dos tempos de preparação (set ups);
redução das atividades que não agregam valor; aumento de rendimento; aumento de eficiência
de equipamentos críticos; sincronia de demanda com fornecimento; ação nos poucos itens
chaves que causam os maiores benefícios.
Os principais itens críticos a serem trabalhados foram os que se relacionavam com o
gargalo e com o desbalanceamento de capacidade da planta, como veremos a seguir:
grafitação – limitação de capacidade de produção (gargalo); MME operando com grandes
lotes e com turnos diferentes dos demais (não sincronizado) – exigência dos parâmetros de
qualidade; quebras de equipamentos críticos; longos tempos de preparação (set ups);
experiências e erros de preparação na Usinagem; quantidades irrestritas de tamanho de niples
e bocais; eletrodos usinados não são reportados até que sejam embarcados; programação de
produção com base na previsão de vendas sem acurácia; gerentes buscam o ótimo local para
suas áreas; forno de cozimento contínuo, com características de processo inflexível, não pode
operar em vazio; altos níveis de inventários, com excessiva agilização para atender os pedidos
em dia.
Estes itens críticos foram identificados a partir de uma revisão detalhada de todo o
fluxo do processo, mapas de capacidades, mapas de fluxo de processo (Gráfico 1), mapas de
2
Lei de Murphy (2005, p.1): “Se alguma coisa pode dar errado, dará. E mais, dará errado da pior maneira, no
pior momento e de modo que cause o maior dano possível.”
66
inventários versus embarques (Gráfico 2), dados de demanda de vendas por cliente, dados
superficiais de custo, avaliação da cadeia de suprimentos e finalmente uma avaliação de
instrumentos de manufatura “enxuta”3. Foram então levantados os efeitos indesejáveis e os
respectivos efeitos desejáveis, identificando potenciais oportunidades de ganhos.
GRÁFICO 1 – SUMÁRIO DO MAPA DE PROCESSOS
GRÁFICO 2 – INVENTÁRIOS X EMBARQUES
3
Manufatura sem desperdício (WOMACK; JONES, 1998).
DE CLARKSVILLE – JUL./OUT. 1999
67
A partir destas oportunidades de ganhos, desenvolveu-se todo o processo de raciocínio
para solução de problemas, tal como exposto por Goldratt (1994), que consiste das cinco
ferramentas (ARA, DDN, ARF, APR e AT) expostas na seção 1.5 desta dissertação.
A partir dos dados acima, trabalhamos na modelagem da programação da produção,
baseada na metodologia do TPC, chegando aos desenhos expostos nas figuras a seguir:
FIGURA 1 – CLARKSVILLE E COLUMBIA LEAD-TIME
As barras representam os departamentos produtivos, com as respectivas capacidades.
No quadro inferior é mostrado o lead time. Na primeira linha, temos os tempos de processo e
os tempos que os materiais aguardam nos estoques entre um departamento e outro, totalizando
79 dias. Na segunda linha, é listado o total de tempo de material em estoque, 47 dias, em que
existe oportunidade de ganho.
68
FIGURA 2 – PROPOSTA DE FLUXO COM TPC
A figura 2 mostra a proposta do modelo piloto TPC com Supermercado, sugerindo
uma redução do tempo de inventário intermediário em 24 dias. Com isto, o lead time total do
processo seria de 55 dias, sendo 23 dias gastos em estoques intermediários.
Posteriormente, fizemos uma análise dos itens que estavam limitando o ganho do
sistema e verificamos que a solução de vários deles passava pela aplicação de estratégias e
técnicas de manufatura “enxuta”, Gerenciamento da Qualidade Total (GQT), MRP II
(Planejamento dos Recursos de Manufatura) e, finalmente, a TOC (Teoria das Restrições). Os
métodos e técnicas mencionadas anteriormente foram tratadas detalhadamente no Capítulo 1
desta dissertação.
Iniciamos o trabalho, fazendo uma análise sistêmica do tipo de fluxo de produção das
plantas de eletrodos de grafite da Graftech, na abordagem de análise V-A-T. A importância
dessa análise, segundo Cox III e Spencer (2002), é que, vendo a organização a partir de uma
visão sistêmica, onde interagem produtos e processos, três categorias gerais de estruturas ou
formas de produção emergem, cada estrutura exigindo uma abordagem um pouco diferente
para o gerenciamento de planejamento e controle.
69
Outro ponto discutido, que não se aplica à fábrica em estudo, por se tratar de projeto
mais recente, mas que deve ter implicações nas demais unidades com projeto de linhas
tradicionais, é o balanceamento das capacidades de produção de todos os centros de trabalho.
Esse conceito pressupõe que se todos os departamentos possuem uma determinada capacidade,
essa deve ser a capacidade total da fábrica. Goldratt e Fox (1989) e Goldratt e Cox (1997)
mostram que isto raramente ocorre devido ao fenômeno do acúmulo de flutuações estatísticas
em recursos dependentes. A aplicação dessas duas características, flutuações estatísticas e
recursos dependentes em uma linha simples, levam ao conceito de se ter capacidade ociosa
nos departamentos não-restrição de modo a permitir que eles tenham capacidade de alcançar o
ritmo da restrição, se necessário. Por isto, é de fundamental importância no TPC termos uma
planta desbalanceada (com capacidades diferentes entre os diversos recursos).
A partir dessa análise, concluímos que estávamos tratando de um fluxo “T”. O
material segue uma linha simples de produção até a grafitação (gargalo), o que poderia ser
considerado como um fluxo tipo “I”, quando então temos, após a grafitação, um ponto de
divergência, em que o mesmo produto pode ser usado para produzir uma variedade de
produtos semelhantes. Segundo Stein (1997), para suportar lead-times mais curtos para esse
tipo de fluxo, duas programações são normalmente usadas: uma via previsão de vendas até o
ponto de divergência, onde o material é estocado; e outra para atender pedidos confirmados
com uma pequena antecedência em relação à data de embarque. Por isto, definimos que o
pulmão de expedição seria composto da programação de usinagem com alguns dias de
antecedência em relação à data de embarque do produto final. Esse tipo de estrutura pressupõe
um pulmão antes das restrições, ou seja, Cozimento (RRE), Grafitação (RRC) e Expdição,
permitindo que essas operem independentemente da maioria dos problemas nas outras
estações de trabalho. A entrada de material no sistema é de suma importância e deve estar
sincronizada com o fluxo da restrição e a demanda de vendas; caso contrário, teremos excesso
de inventário e, como conseqüência, maior confusão de prioridades relativas aos diversos
pedidos. É comum neste tipo de fluxo a utilização de um produto previsto para determinado
pedido para atender outro, gerando baixo nível de atendimento a clientes e muita agilização,
criando, para a fábrica, situações de constante emergência.
A seguir, descreveremos as cinco etapas da metodologia Tambor-Pulmão-Corda com
Gerenciamento de Pulmão e Supermercado – identificar, explorar, subordinar, elevar e
identificar a nova restrição –, utilizada no projeto piloto da Graftech. Durante a apresentação
das etapas iremos relatar os trabalhos paralelos desenvolvidos e a técnica adotada na busca da
melhor solução para cada problema.
70
3.3.1 Identificação da restrição
A demanda do cliente deve dirigir o fluxo de material através da planta; é ela que
determina a prioridade e, por isso, é considerada como o gargalo prioritário. Esta afirmação
corresponde à mudança de paradigma que caracteriza o sistema de “puxar” em contraponto ao
tradicional sistema de “empurrar”. Ou seja, produção “puxada” pelos pedidos, em vez de
produção “empurrada” pela previsão de vendas.
Dada a situação do mercado da época (Demanda > Capacidade das Plantas), o gargalo
se encontrava nas plantas e, por conseguinte, deveria ser identificado, já que ele determina o
ganho de toda a planta. No caso das instalações da Graftech, é recomendado ter o gargalo no
Cozimento ou Grafitação. Isto porque, esses departamentos, quando comparados com os demais,
são os que necessitam de maior investimento para serem elevados, apresentam maior tempo
de processo, maior custo e, normalmente, são recursos restritivos técnicos ou de capacidade.
Na verdade, o time de Gestão de Produção recomendou que o gargalo, sempre que
possível, estivesse no Cozimento, já que esse departamento, na maioria das plantas da
Graftech, é considerado um Recurso Restritivo Estratégico/Técnico (RRE)4 devido à
limitação de flexibilidade, por ser uma operação, muitas vezes, contínua e ter o maior leadtime de todo o processo (consome 50% de todo o tempo de fabricação). Adotando o
Cozimento como gargalo, e este por natureza sendo definido como um RRE, estaríamos
limitando uma única restrição para toda a planta. Isto diminui a necessidade de programação
para apenas um ponto, elimina também a necessidade de um pulmão, reduzindo, assim, o
inventário total em processo. Essa possibilidade, em linha com o pensamento “enxuto”, reduz
o desperdício de tempo com programações, controles e inventário em processo.
No caso do projeto piloto, a Grafitação, com uma capacidade instalada de 41,8 mil
toneladas, era de fato o gargalo, já que tinha uma capacidade menor que todos os
departamentos e a demanda da previsão de vendas. Por isso, o projeto-piloto foi desenhado
considerando o Cozimento como RRE, visto que o Forno “N”, utilizado neste processo, não
podia operar com nenhuma zona vazia, exigindo um pulmão; e a Grafitação era, de fato, o
gargalo. Isto significava a necessidade de uma programação de produção e um pulmão para
cada um desses dois departamentos. Esses pulmões foram denominados pulmão de proteção
4
Recurso Restritivo Estratégico (RRE) é o recurso/operação chave para o planejamento e programação da
produção de uma malha produtiva. Recurso Restritivo Estratégico pode ser considerado qualquer restrição
logística (estratégica) que limita o sistema de alcançar sua meta (STEIN, 1997).
71
do cozimento e pulmão do gargalo, respectivamente. No intuito de garantir que todos os
embarques fossem feitos na data solicitada, a Expedição também foi protegida por um
pulmão-tempo chamado Pulmão de Expedição, baseado numa antecipação de programação da
usinagem em relação à data de entrega do pedido.
3.3.2 Exploração da restrição
Explorar a restrição consiste em extrair o máximo desse recurso, impedindo quaisquer
tipos de desperdícios. Um segundo perdido no gargalo é um segundo perdido em todo o
sistema. Desta forma, foram tomadas as seguintes medidas na operação do gargalo-Grafitação:
- Revisado todo o mix de produtos, definido pelo Advanced Planing & Scheduling
Systems (APS), de modo a maximizar o lucro global da corporação. Neste caso, ativemo-nos a
verificar os resultados obtidos pelo programa.
- O Recurso Restritivo de Capacidade (RRC) ou gargalo foi explorado através da
programação de produção, detalhada com data, peça e tipo de fornos, que o planejava de
modo a trabalhar a plena capacidade, agindo como um Tambor, por determinar o ritmo da
produção. No intuito de permitir que o gargalo operasse a plena capacidade, apesar das
variações dos processos de todos os departamentos anteriores, foi mantida uma proteção,
lançando-se os materiais no Cozimento com certa antecedência de tempo, prazo esse
denominado Pulmão do Gargalo. A programação era emitida quando o estoque do
Supermercado ficava menor do que o target estabelecido. Veremos como foi calculado o
pulmão do gargalo e a rotina de programação do gargalo com detalhes mais adiante.
- Implementadas Técnicas de Controle Estatístico de Processo para os parâmetros de
produção, tais como número de fornos por mês, Performance dos Ciclos de Fogo. Rotina de
reunião diária foi criada entre o programador de produção, supervisor de produção e
engenheiro de processo para avaliar os resultados diários obtidos no gargalo.
- Implementado um sistema de manutenção baseado na Manutenção Produtiva Total
(TPM). Este sistema é derivado do sistema de gerenciamento de qualidade total e é suportado,
essencialmente, por cinco pilares: maximização da efetividade dos equipamentos; envolvimento
dos operadores na manutenção diária; melhoramento da eficiência da manutenção; treinamento
para melhoria do nível de habilidades; e ênfase na manutenção preventiva. Este programa
envolve todos os recursos humanos por toda a vida do equipamento.
72
- Implementado um controle visual mais rígido das peças carregadas no departamento.
Procurava-se evitar a passagem de refugo pelo gargalo.
- Realizado estudo de compra e uso de energia com base nos contratos existentes.
- Realizados treinamentos com os operadores, para torná-los multi-funcionais.
- Implementado o Manufacturing Equipment Eficiency (MEE) nos equipamentos
críticos (gargalo) do departamento de grafitação. O MEE foi utilizado como ferramenta para
melhorar a eficiência dos equipamentos críticos da grafitação. Esse trabalho consiste em
medir a disponibilidade do equipamento (tempo que o equipamento está disponível), a
produtividade (verifica se o equipamento está operando conforme taxas de velocidade de
projeto) e o rendimento (verifica se o equipamento está produzindo peças boas). O MEE é o
resultado em percentual da multiplicação desses três índices em percentuais.
Os Gráficos a seguir mostram alguns levantamentos feitos mediante aplicação das
técnicas descritas acima:
GRÁFICO 3 – GRAFITAÇÃO - IDENTIFICAÇÃO DOS EQUIPAMENTOS CRÍTICOS – CAPACIDADE EFETIVA
DOS EQUIPAMENTOS
GRÁFICO 4 – GRAFITAÇÃO – CAUSAS DAS PERDAS DE PRODUTIVIDADE - GRÁFICO PARETO – TEMPO
PERDIDO
73
EFICIENCIA DOS EQUIPMENTOS DA MANUFATURA
CÁLCULO DO MEE
•
Disponibilidade % = Nº horas trab.
O equipamento está disponível
Nº de horas disponíveis quando necessário?
•
Produtividade % = Tempo Padrão Op. O equipamento está operando de
Tempo Real da OP.
•
Rendimento % = Peças OK
Peças Trabalhadas
acordo com a velocidade projetada?
O equipamento está produzindo
produtos de qualidade?
MEE = Disponibilidade % x Produtividade % x Rendimento %
FIGURA 3 – CÁLCULO DA EFICIÊNCIA DOS EQUIPAMENTOS DA MANUFATURA
Por fim, o pulmão do gargalo foi estabelecido, para evitar que o recurso restritivo
pudesse parar por falta de material, mesmo que algum recurso anterior a ele
momentaneamente deixasse de produzir.
Em relação à restrição estratégica do Cozimento, foi revisto o padrão de processo de
só carregar lotes de mesma medida nos fornos, o que gerava lotes com dimensões maiores do
que o necessário. Além disso, foi implementado o Controle Estatístico de Processo (CEP)
para os índices de MEE e de Manutenção Produtiva Total (TPM) dos equipamentos críticos,
de modo a garantir não a máxima eficiência do departamento, mas uma certa estabilidade e
confiabilidade do processo.
3.3.3 Subordinação de todos os recursos à restrição
No intuito de reduzir o nível de inventário e aumentar a velocidade do produto através
da planta, a liberação de material necessita ser subordinada à programação do gargalo, que é
subordinada à demanda de vendas. Assim sendo, os materiais devem ser liberados apenas para
satisfazer as necessidades das restrições, ou seja, de forma sincronizada.
74
Isso foi feito utilizando-se duas Cordas: uma a partir do gargalo ao departamento de
entrada de material, no caso, o Cozimento; e outra saindo do Cozimento e indo até a liberação
de matéria-prima. Desta forma, conseguimos balancear o fluxo de produção (e não de
capacidade, conforme o modelo tradicional) da fábrica com a demanda.
Para os departamentos não gargalos, foi estudada a possibilidade de uso dos cartões
Kanban. Porém, devido ao desconhecimento da técnica por toda a população de operadores,
optamos por simplificar, utilizando a política do primeiro que entra é o primeiro que sai
(PEPS). Este procedimento pôde ser aplicado com a ajuda do sistema MRP II, que fornecia
relatórios do estágio em que se encontrava cada ordem de produção com a data de entrada e
saída de cada operação.
Adicionalmente, trabalhamos em alguns conflitos ligados à eficiência e tamanho dos
lotes. Até então, todos os departamentos, com ou sem restrição, buscavam a máxima
eficiência, grandes lotes, poucas paradas para mudança de produtos e preparações, tentando,
com essas práticas, obter o “ótimo local” associado ao mais baixo custo calculado pela
contabilidade tradicional5. Além disso, disputavam com as restrições todos os recursos
disponibilizados, tais como: máquinas, investimentos, pessoal, percentual de horas extras e
tempo de pessoal técnico. Todos esses itens foram revistos, de modo a estarem subordinados
primeiramente ao gargalo Grafitação e depois ao Recurso Estratégico Cozimento.
Série de treinamento com todos os Gerentes, Supervisores e Operadores, com a
participação do Gerente da Planta, foi realizada no sentido de facilitar a implantação do novo
sistema operacional.
As etapas restantes da metodologia TPC, “elevação da restrição” e “eliminação da
inércia”, não serão descritas por não se constituírem em escopo do projeto piloto.
3.4 ESTUDO DA DEMANDA
Como exposto anteriormente, a demanda otimizada de cada planta era ditada pelo
resultado do estudo feito pelo Advanced Planinig & Scheduling Systems (APS). A planta de
Clarksville produzia material e recebia produtos semi-acabados do Brasil, México e Europa.
5
Corbett (1997) demonstra a fragilidade da contabilidade tradicional em relação aos cálculos de custo unitário
de produto.
75
Iniciamos o estudo, traçando o perfil de demanda diária por produto e por cliente do
ano de 1999. Também trabalhamos na verificação da acurácia das últimas previsões de
vendas. E por fim, com o perfil das vendas e clientes. Todo esse trabalho foi executado em
conjunto com um representante do time de Marketing/Vendas. Deste trabalho resultaram
algumas observações importantes para o desenvolvimento do Modelo TPC aplicado no
projeto-piloto:
1º - A maioria das ordens de produção era gerada a partir da previsão de vendas e não de
um pedido confirmado. Os clientes só colocavam os pedidos dias antes de suas necessidades,
e o tempo médio de processamento era superior a 60 dias. A acurácia das previsões era falha,
como toda previsão, e ordens de produtos eram desviadas de um cliente para outro ao longo do
processo. Bem típico de fluxo de linha tipo “T”.
2º - Havia cerca de 80% de clientes e produtos que, apesar de não ter pedidos confirmados,
apresentavam uma alta regularidade diária de demanda. Outros poucos, menos de 5%,
apresentavam uma demanda muito instável. E os demais, cerca de 15%, ora apresentavam
regularidade de demanda, ora não.
3º - Notadamente, havia uma concentração das vendas nos finais de mês e, principalmente,
nos finais de trimestre. Resultado da medida de desempenho estabelecida para os vendedores.
4º - Havia reclamação por parte de Vendas em relação aos constantes atrasos, embarques
parciais e perda de vendas oportunísticas. Por outro lado, existiam várias queixas do pessoal
de Planejamento e Programação de Produção quanto às variações das previsões de vendas,
pedidos de última hora e antecipações.
Diante do quadro acima, algumas decisões forma tomadas:
De modo a solucionar os problemas mencionados no item 1 acima, foi sugerido o uso
da técnica conhecida como Supermercado (Replenisment). Considerando que se trata de um
processo de fluxo tipo “T”, estando essa divergência próxima ao final da linha, e com tempo de
processo maior que o tempo que o cliente pode esperar pelo produto, tomamos a decisão de criar
um “Supermercado” de produtos grafitados, ou seja, logo após o processo gargalo-grafitação.
Foram definidos para o item 2º. dois tipos de produtos, com base em critérios
estabelecidos entre os times de Gestão de Produção e de Marketing/Vendas. Os produtos
foram classificados como MTS (make-to-stock – fabricado para estoque) ou MTO (make-toorder – fabricado sobre encomenda). Facilmente, os 80% de clientes/produtos de demanda
regular foram classificados como MTS, e os 5% de demanda instável foram classificados
76
como MTO. A dificuldade foi classificar os restantes 15%, trabalho que foi realizado pelo
grupo, cliente a cliente, produto a produto.
O item 3º. foi delegado ao time de Marketing/Vendas, juntamente com a Diretoria da
empresa, pois requeria uma mudança das medidas de desempenho dos vendedores, bem como
um compromisso por parte da Direção, pelo fato de envolver os resultados trimestrais,
acompanhados de perto por Wall Street.
Para solucionar o item 4º., foi realizada a nova modelagem do fluxo de materiais e
pedidos com base na metodologia do TPC com Gerenciamento de Pulmões e Supermercado,
calculado os pulmões, o Supermercado e os tamanhos das cordas. Todo esse trabalho foi
desenvolvido em conjunto com o pessoal de Vendas e de Produção e divulgado com todos os
envolvidos.
3.5 DIAGRAMA DE FLUXO DE PRODUTO PROPOSTO COM BASE NA
METODOLOGIA TPC COM SUPERMERCADO
Nesta seção, abordaremos o modelo de programação de produção desenvolvido para a
fabricação de eletrodos, descrevendo os pulmões, o Supermercado e seus respectivos cálculos.
É importante esclarecer que o plano de produção deve prever uma capacidade
protetiva no gargalo da ordem de 2 a 3%. Essa capacidade jamais deve ser vendida, pois, caso
o gargalo sofra alguma interrupção, não terá como recuperar.
A programação de material difere bastante dos produtos produzidos sob encomenda
(MTO) em relação aos produtos fabricados para estoque (MTS).
Produtos Produzidos sob Encomenda
É necessário que se verifique, antes do aceite do pedido, a existência de capacidade no
gargalo. Neste caso, é lançada uma corda da data de entrega prometida até o gargalo (tempo
de processamento) mais um pulmão, que, inicialmente, consideramos como sendo 50% do
tempo do processo. Alertamos que o pedido é que “puxa” a produção desde o início do
processo. A segunda corda é lançada do gargalo até a liberação da matéria-prima no MME
(tempo de processo) adicionado o Murphy de 50% desse tempo.
Também foi desenvolvida a possibilidade de se verificar algumas alternativas para
atendimento de vendas de produtos sob encomenda, como segue:
77
- a ordem poderia ser atendida por material sem pedido, que se encontrasse em processo;
- a ordem poderia ser atendida por peças de excesso de inventário;
- por último, seria verificado se a ordem poderia ser atendida com material feito para
estoque, sem prejudicar seu atendimento (possível quando o pedido sob encomenda é
desprezível quando comparado à demanda total do material feito para estoque – porém devese ter muito cuidado com essa prática).
Produtos Produzidos para Estoque
Quando o pedido dá entrada no sistema, a corda é lançada da data de entrega até o
Supermercado, considerando o pulmão de expedição (antecedência em tempo). Isto é, a data
de entrega menos o tempo de usinagem, embalagem e pulmão.6
O pulmão da Expedição foi considerado em 100% a mais do que o tempo de processo
na Usinagem, basicamente devido o longo tempo de preparação da máquina.
Quando as peças são usinadas a partir do Supermercado, é verificado se a quantidade
puxada fez com que a quantidade de peças do inventário do Supermercado ficasse abaixo do
Target estabelecido. Em caso afirmativo, um sinal é enviado para Cozimento, informando
quando e quantas peças precisam dar entrada no forno; ao mesmo tempo, é enviado um sinal
para o MME produzir na mesma proporção. Caso o inventário de peças do Supermercado
fique acima do target estabelecido, nenhum sinal de produção de peças é enviado.
O Diagrama 1, a seguir, mostra as cordas, os pulmões, em dias, e o Supermercado. O
Supermercado é definido em número de peças e consiste de um inventário. A expectativa é
que, depois de implementado o projeto, tenhamos uma redução de lead-time de 79 para 55
dias, o que, para um produto de alto valor agregado como eletrodos, representa um valor
significativo de caixa. Adicionalmente, ainda há uma melhoria na qualidade, menor risco de
obsolescência, e mais velocidade no atendimento dos pedidos.
6
Utilizamos mais uma técnica, desenvolvida para atender ao sistema just in time, concebida por Dr. Shigeo
Shingo, chamada de Single-Minute Exchange of Die (SMED). Essa técnica visa à troca rápida de ferramentas
e consiste de três estágios: separação entre o set up interno e o set up externo, que pode ser feita com a
máquina em operação; conversão de alguns set ups internos em set ups externos; e redução dos tempos em que
são feitos os set ups internos remanescentes, promovendo mudanças de conceitos (SHEIN, 1997).
Essa mesma técnica foi utilizada no MME e no Cozimento, áreas consideradas não gargalos. Os ganhos frente
ao baixo investimento, permitiram um maior número de trocas e menor tamanho de lotes sem comprometer a
capacidade protetiva dos departamentos.
78
Demanda
do Cliente
MTS
Pulmão
Expedição
Pulmão Expedição
Supermercado
Niple
Niples
Usinagem / Embalagem
MTS
MTO
Supermercado
Eletrodo Grafitado de
Outras Plantas
MTS Teste Físico
Grafitação
(RRC Clarksville)
Pulmão do
Gargalo
Pulmão
RRC
Recozimento
MTS
MTO
Impregnação
Legenda
Cozimento
Pulmão
Cozimento
MTS
Pulmão
RRE
Reposição Material
Sinal
MME
Matéria-Prima
DIAGRAMA 1 – FLUXO DE PRODUTO PROPOSTO PARA CLARKSVILLE
Proteção
79
O Supermercado se faz necessário visto que, no ambiente desse negócio, o tempo de
processamento é maior do que o tempo que os clientes estão dispostos a esperar para obter o
produto. A decisão de colocar o Supermercado após a grafitação decorre do fato de ser este o
RRC; e por termos várias opções de produtos após a usinagem, permitindo assim um
inventário de Supermercado reduzido.
3.5.1 Cálculo do Target do Supermercado
O cálculo do target do Supermercado consistiu de estudo estatístico de demanda
histórica e informações de mercado, lead-time médio, mais um tempo adicional para absorver
as variações de processos e demandas que sempre ocorrem. A lista de todos os clientes, por
produto e demanda, foi preparada por Atendimento a Clientes e validada por Marketing.
Assim, foi calculado o target do supermercado para cada produto produzido para estoque
(make-to-order), conforme a fórmula abaixo:
Target Supermercado = [Demanda média diária x (lead-time médio do WIP + variação
do lead-time do WIP)] x Variação média da demanda
WIP – estoque de produto em processo (work-in-process)
Este processo foi utilizado para o cálculo de todos os produtos feitos para estoque
(make-to-stock) e, posteriormente, foi alimentado no sistema de programação por computador
denominado MAC-PAC.
Sempre que o material é vendido, uma ordem de produção de usinagem é gerada, com
uma antecedência de tempo definida em relação à data de embarque. O lançamento da ordem
de produção de usinagem altera o estoque do Supermercado. É então verificado se o material
restante entre o recurso restritivo estratégico e o inventário grafitado é menor ou maior que o
target estabelecido. Se o inventário estiver menor que o target, é emitido um sinal para se
carregar novo forno no cozimento e, ao mesmo tempo, é verificada a necessidade de emissão
de sinal do cozimento para a liberação de matéria-prima. Uma seqüência de sinais era usada
para checar se nenhum sinal tinha sido perdido. Todos os sinais permitiam uma verificação de
status de ordem aberta ou concluída, inclusive com as respectivas datas (lead-time). Todos os
80
sinais eram enviados de preferência on-line ou, pelo menos, uma vez ao dia. Se o inventário
restante fosse maior que o target estabelecido, nenhum sinal era gerado.
O gerenciamento do Supermercado difere um pouco do gerenciamento dos pulmões,
principalmente na periodicidade de análise. Essa análise deve ser pelo menos mensal, e os
targets não devem variar com muita freqüência; entretanto é importante acompanhar as
variações, de modo a ter um supermercado de tamanho adequado e que garanta as datas de
entrega com segurança. Este passo está em linha com o aprimoramento contínuo proposto
pelo do método TPC.
3.6 GERENCIAMENTO DE PULMÃO
O gerenciamento de pulmão é requerido para cada pulmão anteriormente identificado
(Pulmão de Expedição, Pulmão do Gargalo e Pulmão do Recurso Restritivo Estratégico).
O gerenciamento efetivo dos pulmões é crítico para o sucesso da implementação
apropriada do método TPC. O gerenciamento do pulmão é o procedimento de análise e
controle do conteúdo do pulmão e da correta alocação de recursos.
Gerenciamento de pulmão é, antes de tudo, um procedimento de validação do tamanho
do pulmão. No início da implementação do TPC, os tamanhos dos pulmões foram estimados
com um certo conservadorismo (50% dos tempos de processo). Entretanto esses tempos
deveriam ser checados a posteriori, a fim de garantir seu correto dimensionamento. O
procedimento é também uma ferramenta diária de checagem da programação (a partir da
análise deste, pode se expedir ou adotar ações especiais para atender a demanda).
O gerenciamento dos pulmões permite foco, simplifica as prioridades e alerta
previamente para problemas com a programação. Planejamento e ação dependem de como os
pulmões são consumidos ou ressupridos pelas ordens. Essa é a ferramenta que permite a
redução dos lead-times e dos respectivos pulmões com segurança, sem colocar em risco as
datas de entrega, garantindo o aprimoramento contínuo da gestão da manufatura
O Pulmão de Expedição, no caso, foi calculado pelo lead-time de processo do Supermercado
até a Expedição (4 dias) mais uma margem de erro decorrente do rendimento e variabilidade
do processo (2 dias = 50% do lead-time). O Pulmão de Expedição, portanto, foi estabelecido
em 6 dias, o que significa que teríamos todos os embarques prontos com uma antecedência de
até 6 dias, na ocorrência de um rendimento de 100% e 0% de variação de processo.
81
O Pulmão do Gargalo foi calculado como sendo igual ao lead-time da liberação da
ordem de carregamento do recurso restritivo estratégico do cozimento até a chegada das peças
na grafitação (21 dias) mais uma margem para a variabilidade de processo e de rendimento
(10 dias = 50% do lead-time). Logo, o Pulmão do Gargalo foi estimado, inicialmente, em 31
dias.
O Pulmão do Recurso Restritivo Estratégico (RRE) foi calculado como sendo o leadtime da liberação da matéria-prima até as peças estarem carregadas nos cilindros de cozimento
(4 dias) mais uma margem para Murphy (2 dias = 50% do lead-time). O total de tempo
estimado para o pulmão do RRE foi de 6 dias.
Os pulmões são divididos em três zonas de igual comprimento, do topo à base: zona I,
zona II e zona III7. A zona I é denominada zona de ação. Isto significa que, se a ordem não
chegar na origem do pulmão até o início da zona I, alguma medida tem que ser tomada para
garantir a data de entrega. Algumas empresas admitem trabalhar com 10% das ordens
adentrando esta zona, o que significa que as preocupações do dia-a-dia serão gastas com
apenas 10% das ordens. A zona II é a zona de acompanhamento. Quer dizer, se o material
não chegar à origem do pulmão até o início desta zona, é importante verificar onde está a
ordem e assegurar que nada de errado esteja acontecendo, porém nenhuma ação é requerida,
podendo, no máximo, ser feito algum tipo de planejamento de alternativas. A zona III é a zona
inicial do pulmão. Normalmente, 90% das ordens devem alcançar a origem do pulmão nesta
zona, e nada deve ser feito. A Figura 4, a seguir, é ilustrativa:
Pulmão Expedição
I
Zona I
zone
Pulmão gargalo
Pulmão RRE
Nº pedido, data de
entrega (até 2 da data de
entrega)
Nº op.Graf., data op.
Graf. (10 a 0 dias da data
programada do gargalo)
Nº op. Coz., data op. Coz.
(2 a 0 dias)
Nº pedido, data de
entrega
(6 a 4 dias da data de
entrega)
Nº op. Graf., data do
sinal (31 a 20 dias da
data do sinal)
Nº op. Coz., data
liberação matéria prima
(6 a 4 dias da data do
sinal)
II
Zona II
zone
III
Zona III
FIGURA 4 – ANÁLISE DOS TEMPOS DOS PULMÕES
7
A depender do autor, a zona I e zona III são invertidas. Entretanto, todos costumam atribuir as cores vermelho
e verde para a zona de ação e a zona de origem do pulmão, respectivamente.
82
O método TPC estabelece que é necessário tão somente programar e monitorar as
poucas restrições, estabelecendo políticas de seqüenciamento para os demais departamentos,
tais como: PEPS e KANBAN; e praticar o gerenciamento dos pulmões, incluindo o
supermercado, para se ter um aprimoramento contínuo do ganho.
CAPÍTULO 4
ESTUDO DE CASO DAS IMPLEMENTAÇÕES
DO MÉTODO TPC COM GERENCIAMENTO DE
PULMÕES E SUPERMERCADO NAS PLANTAS
DE CANDEIAS E MONTERREY
4.1
APLICAÇÃO DO MODELO TPC NA PLANTA DE CANDEIAS
A implementação do método TPC na planta de Candeias teve início no ano de 2001. O
projeto foi liderado pelo autor desta dissertação, trazendo a experiência adquirida no projetopiloto de Clarksville, TN. A equipe do projeto foi constituída de um visitante da planta de
Monterrey, um programador de produção e um estagiário. Todos trabalharam intensamente
por cerca de 4 meses. Também foi utilizada consultoria externa da Avraham Goldratt Institute
do Brasil.
A metodologia de implementação teve como principais passos:
- Treinamento de 3 dias com os consultores externos sobre os princípios básicos do
TPC para o time de implementação e todos os gerentes da planta (22 pessoas).
- Treinamento de 4 dias com os consultores externos, com o time de implementação,
os gerentes de produção e logística, para aprofundamento dos princípios e
modelagem do fluxograma TPC a ser implementado em Candeias. Apesar de termos
o modelo piloto de Clarksville, desenvolvemos o modelo de TPC para Candeias com
o próprio time, de modo a quebrar resistências, como o próprio Goldratt (2001, v.7)
84
sugere. Neste treinamento, foi utilizado o simulador1 Production The TOC Way. O
produto final foi a modelagem da planta de Candeias seguindo os 5 passos do TPC
adicionado do Supermercado. O processo de raciocínio de Goldratt (1990) foi aplicado
durante esses quatro dias.
- Foi escolhido o time de multiplicadores constituído pelo mexicano 2 e pelo estagiário,
que treinaram 100% do restante da fábrica. Para este treinamento, o Programa
Simulador foi substituído por material específico, elaborado para este fim, e
utilizado o jogo de dados3, para simular os princípios do TPC.
- 100% do grupo gerencial também foi treinado por Thomas Corbett, autor do livro
Contabilidade de Ganhos: A Nova Contabilidade de Acordo com a Teoria das
Restrições, no módulo de contabilidade de ganho, também elaborado por ele.
4.1.1 Problemas na Implementação
a) Resistência a Mudança
A busca de 100% de eficiência em todos os departamentos foi detectada como uma
das principais barreiras. Os departamentos estavam acostumados a ser medidos e
reconhecidos pela alta eficiência alcançada.
Para solucionar este problema, foram retirados os gráficos de controle de eficiência
dos departamentos não restritivos, sendo mantido apenas no departamento gargalo. O
comprometimento da alta administração da planta, com a implementação do TOC, também
ajudou muito. Em paralelo, já vínhamos desenvolvendo as pessoas, para trabalhar em equipe,
com o acompanhamento de consultoria externa específica, o que ajudou na redução dos
1
Consiste de um programa, em disquete, de operação de uma planta. Inicialmente, o treinando opera uma planta
chamada paradisíaca e com os conceitos de eficiência local, grandes lotes etc. Depois ele é solicitado a operar
a mesma planta utilizando os conceitos da TPC. Em ambos os casos, são auferidos os resultados do ganho da
empresa. Quem melhor aplicar os conceitos dos 5 passos de focalização da TOC tem maior ganho.
2
Gerente de Projetos de Monterrey incorporado à equipe do projeto de implementação do método TPC na planta
de Candeias.
3
O jogo de dados substitui o simulador mencionado anteriormente. Normalmente, é utilizado para trabalho com
grupos maiores e tem a finalidade de simular uma produção simples com capacidades e flutuações estatísticas
definidas. Inicia-se o jogo com uma linha de produção com capacidade balanceada e após constatação do
aumento de inventário em processo é sugerido que se jogue simulando uma linha desbalanceada, logo com
uma restrição. Neste momento, a restrição trabalha com apenas um dado, enquanto os demais com dois dados.
85
conflitos e melhorou o relacionamento interdepartamental. Esse trabalho durou 5 anos e
envolveu a todos, da alta administração até o mais baixo nível hierárquico.
A contabilidade de custos tradicional também é uma barreira, pois, apesar de ser dito
que se trabalha com a contabilidade de ganho, proposta por Goldratt (1990), muitas vezes as
decisões praticadas ainda levam em consideração a contabilidade de custos, ou seja, o custo
por tonelada.
b) Sistema de Informação e Software
Utilizamos, no planejamento e controle da produção, o MRP II rodado numa máquina
HP, com muitas limitações de desenvolvimento e compatibilidade de linguagem com outros
programas e softwares. Usávamos o MRP II para termos os controles das ordens de produção,
vendas, refugos e inventários por estágio, e programas em excel para rodar os estudos de
capacidade, planejamento e programações de produção.
Para implementação do projeto TPC, empregamos o software Drummer, adquirido
para este fim, que aplica os conceitos do TPC com Supermercado e Gerenciamento de
Pulmões. Assim, pretendíamos trabalhar com o MRP II e o Drummer, este último utilizando
os 5 passos da focalização do TPC com o conceito de supermercado.
Para a utilização do Drummer, entretanto, foi preciso quebrar a resistência, deixando
para trás as planilhas em excel e passando a programar a fábrica segundo esse novo software.
O programador continuava sentido a necessidade de ver as programações nos diversos
estágios, apesar de as datas nunca se concretizarem conforme programadas. Durante quatro
anos, vários foram os motivos alegados para não se utilizar apenas o Drummer e o MRP II.
Somente em final de 2004 foi decidido adotar apenas o Drummer para o planejamento e a
programação de produção, sendo programadas as restrições (Expedição e RRC) e dando os
primeiros passos para o gerenciamento dos pulmões. Os demais departamentos seguiriam o
PEPS, além da política: se tem matéria-prima, processe o mais rápido que puder; caso
contrário, aguarde e se prepare para quando chegar o próximo lote.
c) Identificação das Restrições
Este foi o principal problema encontrado durante a implementação do TPC com
Supermercado na planta de Candeias. Isto porque, todos os cálculos de capacidade e a
experiência prática de anos passados nos mostravam que o gargalo da planta se localizava na
86
grafitação. Isto, aliado ao fato de ser este setor o que mais contribui na absorção do custo
unitário do produto (contabilidade de custo), facilitou ainda mais na modelagem, que definiu
este departamento como o gargalo.
Um fato novo, ocorrido ao longo de 2001 – a qualificação de catodos para exportação,
não levado em conta na modelagem – em poucos meses transferiu o gargalo da grafitação
para o MME. Como a planta foi construída no conceito de capacidade balanceada, com
capacidades entre departamentos muito próximas, isto, em estruturas lógicas de fluxo tipo I e
T, permite a mudança do gargalo muito comumente.
As peças não fluíam através do MME e, em poucos meses, tivemos que refazer o
modelo TPC, considerando o MME como RRC. Apesar de alguma inércia inicial para
entender o que realmente se passava, em poucos meses tivemos a certeza de que os sintomas
levavam a uma mudança de gargalo, mesmo que indesejável. Sendo o MME o primeiro
departamento de uma linha de fluxo de estrutura lógica tipo I e T, não fazia sentido manter
esta condição de operação, principalmente por ser o MME o departamento de maior
responsabilidade de processo para produzir peças de boa qualidade e de mais baixo custo para
se elevar a capacidade.
As complexidades envolvendo o MME, a partir de 2001, estão relacionadas com os
seguintes aspectos:
- O MME é usado para fabricação de eletrodos e catodos. O fato dos dois produtos
utilizarem os mesmos equipamentos, e os materiais não poderem ser misturados,
exige um longo tempo de limpeza e parada de equipamentos na passagem de uma
produção para outra. Esse tempo foi subestimado em todos os cálculos de
capacidade existentes, e foi agravado a partir de 2001, com os vários experimentos
de qualificação de catodos para a exportação e o acréscimo do volume de suas
respectivas vendas, que demandavam maior número de processos de limpeza e
paradas ao longo do ano.
- O MEE do MME, que sempre andou na casa dos 50 a 60%, caiu, de uma hora para
outra, para abaixo dos 30%. Este fato demonstrava uma perda real de capacidade
jamais esperada. Essa queda de eficiência se deu devido a problemas nas três áreas
englobadas pelo índice: disponibilidade de equipamento; velocidade do processamento;
e refugo.
Considerando os cálculos iniciais, decidimos explorar o MME ao máximo, buscando
retornar ao índice de MEE de pelo menos 55%. Durante o período de meados de 2001 a finais
87
de 2004, todos os esforços de exploração e subordinação foram feitos em prol do MME.
Como exemplo de exploração, citamos: aumento do número de turnos de operação e do
número de operadores por turno; colocação de equipe de manutenção 24 horas; equipe de
engenharia industrial interna e externa específica para a área; pulmão de matéria-prima;
treinamento dos operadores em processo de troca rápida de matriz (SMED); colocação dos
contratados para fazer a limpeza do departamento; agrupamento dos produtos, visando maior
produtividade da programação de produção; e foram trazidos dois misturadores que se
encontravam parados na fábrica de Columbia, TN.
Todos os esforços de exploração foram possíveis porque estava claro para a planta e
para a Corporação o conceito de subordinação ao RRC, tendo sido colocados todos os
esforços disponíveis para explorar o MME. Finalmente, em outubro de 2004, foram feitos
investimentos no MME, elevando definitivamente sua capacidade, como ilustram os gráficos
a seguir:
MEE
LSC
MÉDIA
MEE
LIC
80,0
70,0
65,7
60,5
60,0
53,6
50,0
46,2
43,7
47,3
43,4
45,8
56,3 55,6
56,1
52,3
50,2
46,9
45,1
37,6
40,6
33,8
20,0
52,5
46,3
53,0
51,3
50,8
58,6
59,1
60,1
55,5
53,1
55,4
54,2
49,7
51,6
44,9
44,0
40,0
30,0
62,4
59,0
53,8
25,4
37,3
Instalaçao dos 2
misturadores de
Columbia, Tn.
Parada manutenção
Elevação de capacidade
10,0
jan
/02
fev
/02
m
ar/
02
ab
r/0
2
m
ai/
02
jun
/02
jul
/02
ag
o/0
2
se
t/0
2
ou
t/0
2
no
v/0
2
de
z/0
2
jan
/03
fev
/03
m
ar/
03
ab
r/0
3
m
ai/
03
jun
/03
jul
/03
ag
o/0
3
se
t/0
3
ou
t/0
3
no
v/0
3
de
z/0
3
jan
/04
fev
/04
m
ar/
04
ab
r/0
4
m
ai/
04
jun
/04
jul
/04
ag
o/0
4
se
t/0
4
ou
t/0
4
no
v/0
4
de
z/0
4
jan
/05
fev
/05
m
ar/
05
0,0
GRÁFICO 5 – EVOLUÇÃO DO ÍNDICE MEE NO MME – PERÍODO: JUN. 2002/MAR. 2005
88
Produção EPA x Refugo
35000
20%
19%
18%
30000
18%
YTD
16%
14%
13%
20000
12%
12%
10%
15000
8%
% Refugo
Toneladas EPA
16%
15%
25000
6%
10000
4%
5000
2%
0
0%
2000
2001
2002
Produção Total EPA
2003
2004
2005
% Refugo
GRÁFICO 6 - EVOLUÇÃO DA PRODUÇÃO E REFUGO DO MME – ELETRODOS E CATODOS
Nessa ocasião, o projeto de elevação foi concluído, elevando a capacidade do MME
para 39.000 t/ano, transferindo o RRC para o cozimento e não para a grafitação, conforme a
modelagem original. O novo RRC, Cozimento, foi identificado por uma série de razões:
4.000t/ano de catodos que saem do MME e passam por Cozimento não passam pela
grafitação; cozimento e recozimento utilizam o mesmo recurso forno, e a demanda de peças
AGR (que não demandam recozimento) está sendo substituída por peças AGX (que
demandam forno para recozimento); o refugo de catodos em usinagem situava-se acima dos
10%, absorvendo capacidade extra de fornos; necessidade de alto investimento para elevação
de capacidade; e por fim a grafitação, que estaria balanceada em capacidade com o
cozimento, acabara de receber equipamentos (ponte rolante e unidade retificadora) de outras
unidades do grupo, permitindo sua elevação de capacidade em curto espaço de tempo e com
um investimento relativamente baixo.
As evoluções das capacidades estimadas dos diversos departamentos durante o período
de 2001 a 2004, considerando as paradas para limpeza e níveis de refugo mais realistas, estão
mostradas no quadro a seguir:
89
CANDEIAS
MME
4
COZIMENTO
CAPACIDADE
(TX1000)
IMPREGNAÇÃO
RECOZIMENTO
GRAFITAÇÃO
ELETRODOS
CATODOS
USINAGEM
USINAGEM
Março, 2000
47.2
41.7
29.0
24.9
30.0
31.8
5.0
Junho, 2001
30.0
33.0
29.0
20.0
30.0
35.0
8.0
Junho, 2002
30.0
33.0
29.0
20.0
30.0
35.0
8.0
Abril, 2003
33.0
33.0
30.0
25.0
30.0
35.0
15.0
Outubro, 2004 39.2
35.5
30.0
25.7
32.3
35.0
15.0
QUADRO 1 - CAPACIDADE (EQUIVALENTE AO PESO USINADO) POR DEPARTAMENTO
O quadro das produções (equivalente em toneladas usinadas) e vendas totais de
eletrodos e catodos no mesmo período é mostrado na seqüência:
CANDEIAS
PRODUÇÃO (T X 1000)
VENDAS
ANO
MME
COZIMENTO
GRAFITAÇÃO
TOTAIS
2000
24.4
25.2
22.2
23.0
2001
20.0
19.6
16.0
18.4
2002
22.0
22.1
18.4
21.0
2003
29.1
31.5
25.4
26.6
2004
32,9
31.8
27.8
31.3
QUADRO 2 – PRODUÇÃO E VENDAS POR DEPARTAMENTO5
d) Capacidade Protetiva
O monitoramento da capacidade protetiva permite avaliar o potencial de flutuação do
gargalo dentro do sistema, devido a problemas associados aos recursos ou a sua estabilidade
ou capabilidade. Em outras palavras, podemos dizer que a capacidade protetiva permite a um
recurso se recuperar a tempo, após a ocorrência de Murphy, sem afetar a restrição.
4
5
A capacidade de 2000 não considerava o desenvolvimento do negócio catodos e todos os experimentos
relativos a esse negócio, que impactou significativamente as capacidades de MME e Cozimento.
MME e Cozimento – Inclui 8.000 t/ano de Catodos.
Impregnação e Recozimento – Inclui 100% dos eletrodos.
Grafitação – Exclui 4.000 t/ano de Catodos.
Impregação, Recozimento e Usinagem – não foram reportados por ter capacidade protetiva acima dos
departamentos citados.
Grafitação – lembrar que os catodos cozidos não passam por grafitação e são parte das vendas totais.
90
TABELA 1 – ANÁLISE DE CAPACIDADE PROTETIVA6
CANDEIAS
CAPACIDADE
CAPACIDADE
CAPACIDADE
AGR
(TX1000)
OUTUBRO
ALOCADA P/
LÍQUIDA P/
VS.
CAPACIDADE
PROTETIVA
2004
CATODOS
ELETRODOS
AGX
REVISADA
(%) COZIMENTO
39.2
35.5
30.0
25.7
32.3
8.0
8.0
0.0
0.0
4.0
31.2
27.5
30.0
25.7
28.3
1.8
-
31.2
27.5
30.0
27.5
28.3
113.5
109.1
102.9
MME
Cozimento
Impregnação
Recozimento
Grafitação
CAPACIDADE
A tabela acima mostra as capacidades ajustadas de MME, Impregnação e Grafitação
em termos de percentual em relação à capacidade de Cozimento – o RRC. Como pode ser
visto, a capacidade protetiva varia de 13,5 % em relação ao MME e até 2,9% em relação à
grafitação. Esta capacidade protetiva está bem abaixo do recomendável que é de 10 a 15%.
Esta baixa capacidade protetiva permite flutuações de gargalo entre o Cozimento e a
Grafitação, quando da ocorrência de interrupções na Grafitação, podendo levar um longo
tempo para se recuperar o fluxo de material de acordo com a batida do tambor.
Estabelecer a capacidade protetiva recomendada, significa desbalancear a capacidade
da planta. Esta é a maneira de manter o fluxo balanceado.
O aprendizado passado no MME deixou bem clara esta necessidade, e este teve a
capacidade elevada propositadamente, para atender a esta necessidade. Cabe agora elevar a
grafitação, provendo-a de uma capacidade protetiva superior a 10% em relação ao cozimento,
para que o sistema possa manter o tão desejado fluxo balanceado.
e) Programação da Restrição
Os problemas enfrentados na identificação da restrição, formação da capacidade
protetiva e alta demanda de vendas não permitiram a implementação do modelo originalmente
desenhado para Clarksville e Candeias. Ou seja, esse modelo previa que a partir de um estudo
de demanda, produtos definidos como fabricados para estoque (MTS – make to stock)
deveriam ter sua demanda diária estabelecida e um supermercado deveria ser criado para
6
Eletrodos AGR, depois de fabricados no MME e Cozidos, passam diretamente para a usinagem. São
produzidos dois tipos de catodos: um que só atravessa MME e Cozimento; outro que atravessa MME,
Cozimento e Grafitação. Daí a necessidade de ajustes na capacidade para análise da capacidade protetiva.
91
esses produtos MTS. Assim que uma ordem de produção fosse usinada, verificava-se o saldo
do supermercado e, caso este fosse menor que o estabelecido, uma ordem de produção era
enviada para a restrição.
Todo esse trabalho foi desenvolvido apenas em forma de estudo pelo grupo de projeto,
com pouco comprometimento da área de vendas (inclusive Corporativa). Assim, até a
presente data o modelo não foi aplicado, de fato.
Em substituição ao modelo proposto, a programação da restrição foi estabelecida da
seguinte forma: a programação considerava todos os pedidos em carteira, bem como a
previsão de vendas como pedidos firmes (MTO – feito sob encomenda). Pelo sistema MRP,
essa demanda, considerada como firme, para o mês em curso e os próximos dois meses, é
alocada de acordo com as datas efetivamente ditadas pelo cliente ou por um conjunto de
regras estabelecidas na rotina do MRP. Essa alocação é comparada com o WIP e as faltas são
tidas como necessidades, que são programadas na restrição, MME ou Cozimento, enquanto
um desses era a restrição, respectivamente. Quando o Cozimento passou a ser a restrição, após
sua programação, uma corda é lançada, solicitando a programação de MME.
f) Demanda (MTO e MTS)
Conforme vimos no Capítulo 1 deste trabalho, quando a restrição está na fábrica,
vendas deve vender a capacidade do gargalo, preferencialmente, com o mix que gerar o maior
ganho.
Adicionalmente, é recomendado manter uma capacidade protetiva do gargalo de cerca
de 2 a 3 %, para que, caso haja alguma interrupção deste, as datas de entrega ainda possam ser
mantidas, ou até mesmo seja possível uma recuperação mais rápida dos pedidos que por
ventura fiquem em atraso.
Infelizmente, este conceito ainda não está bem assimilado na Corporação, e vendas
elabora uma previsão de vendas de 7 meses, sem levar em conta as capacidades do gargalo,
nem de qualquer outro recurso, e administra aceitando novos pedidos a qualquer tempo,
buscando agilizar prazos de entrega, antecipando vendas, visando, exclusivamente, o
atingimento de metas de volume a determinados preços. Mesmo pedidos em carteira, com
datas de entrega firmes, podem ter as datas renegociadas, tanto por vendas quanto pelos
clientes.
92
Desta forma, a determinação da demanda média diária e a classificação de clientes
MTS e MTO oficial (pois existe uma, feita pelo time de projeto), que, por definição, deve ser
feita por vendas/marketing, encontra-se pendente.
g) Supermercado
Desde 2001, as previsões de vendas, assim como as vendas, são proporcionais à
produção, não permitindo a criação de inventário para compor o estoque do supermercado. O
módulo do sistema de planejamento e controle da produção já calcula o estoque de
supermercado, se informadas as demandas médias diárias e a classificação de produtos MTO
e MTS. Inclusive, esse cálculo pode ser gerado até mesmo pelo sistema, necessitando apenas
a validação da área de vendas/marketing dos critérios utilizados. Atualmente, vem se
trabalhando com algum estoque de segurança, resultante das variações da produção baseada
em previsão de vendas e, eventualmente, comparamos os valores deste estoque em relação ao
supermercado proposto pelo sistema, de modo a termos uma referência do distanciamento em
que nos encontramos em relação ao modelo.
h) Gerenciamento dos Pulmões
O Pulmão da Restrição esteve no MME durante o período 2001 a 2004, passando, a
partir daí, para o Cozimento. Durante o período em que esteve no MME, era composto do
número de dias de matéria-prima em estoque, que normalmente, por ser 100% importada, é
superior ao desejável. Neste caso, o gerenciamento do pulmão envolve outras questões de
logística, não havendo problema da falta para o gargalo. No final de 2004, o pulmão da
restrição passou a ser constituído de peças verdes e, neste caso, a capacidade do MME de
13,5% acima da do cozimento, permite aplicação da técnica. Entretanto, até hoje não foi
instituído o Gerenciamento de Pulmão com a utilização das ferramentas estatísticas por grupo
de família de produto, sugerido pela Corporação.
O Pulmão Expedição também não tem sido aplicado em conformidade com a
ferramenta estatística proposta pela Corporação, mas já se pratica buscar usinar as ordens de
produção, para que cheguem à expedição com uma antecedência de 3 dias. Passado este
prazo, procura-se agir, quer com turnos adicionais, quer com roteiros adicionais. Essas ações,
porém, como são intuitivas e não sistemáticas, não possibilitam um aprimoramento contínuo.
93
i) Treinamento de Pessoal
100% das pessoas foram treinadas em TPC em 2001 e 100% foram retreinadas em
2004/2005. Além disso, o grupo gerencial e o grupo de vendas e marketing foram treinados
no módulo de contabilidade de ganhos e nos aplicativos de auto-aprendizagem da TOC de
Goldratt (2001).
Durante o período estudado, de 2001 a 2004, o Programador de Produção e o
estagiário foram substituídos, trazendo algum prejuízo na velocidade da implementação do
projeto, principalmente no que diz respeito à utilização do software Drummer.
j) Redução de Variabilidade e Estabilidade de Processo
No questionário de auto-avaliação informado à Corporação, foram reportados como
pontos pendentes para a implementação do TOC na planta de Candeias, com base no
Decalogue (LEPORE; COHEN, 1999), os itens: 3. Estabilize o sistema; 5. Implemente o
Gerenciamento do Pulmão; 6. Reduza a variabilidade da restrição e dos principais processos.
Importante notar que esses itens, apesar de avaliados como não implementados, apresentaram
índices de cumprimento alto: de 7, 9 e 7, respectivamente. Essas notas eram atribuídas
individualmente pela planta e, posteriormente, discutidas com o representante da Corporação,
na tentativa de manter um critério uniforme entre as plantas. Como resultado desses valores, o
plano de ação foi desenvolvido para ser implementado em 2005, atendendo a essas
exigências.
4.1.2 Indicadores de performance
Os indicadores foram sendo estabelecidos no decorrer do período e estão reportados na
tabela a seguir.
94
TABELA 2 – INDICADORES DE PERFORMANCE DA PLANTA DE CANDEIAS
INDICADOR
Giro de Estoque
Inv. Total/vendas (%)
Inv. Graf./vendas (%)
% entrega da data
Lead time (dias)
Refugo (%)
Ganho dinheiroxdia
(MUS$x1000)
% Utilização Gargalo
eletrodos
catodos
eletrodos
catodos
eletrodos
catodos
eletrodos
catodos
eletrodos
catodos
eletrodos
catodos
2000
3,67
2,98
27,0
15,5
92,33
66
0,83
4,8
-
2001
3,48
3,76
27,9
13,0
91,74
57
0,82
9,0
-
ANO
2002
5,11
6,65
25,3
3,5
69,31
54
80
0,74
23,0
-
2003
4,4
3,0
25,3
8,6
84,6
95,6
62
103
2,7
13,7
19,0
4,6
-
2004
4,0
3,3
25,2
4,5
93,8
97,6
67
100
2,5
14,3
9,5
20,6
90,3
100,0
No final de 2004, entretanto, a Corporação definiu e aprovou cinco indicadores que
farão parte do gerenciamento do negócio em nível global a partir de 2005. Alguns desses
indicadores já eram medidos e outros serão introduzidos:
- Utilização do Gargalo (%) – Esse indicador é reportado semanalmente e mede o total
de horas paradas planejadas e não planejadas em relação ao tempo do gargalo (7x24horas). As
causas de paradas planejadas e não planejadas foram previamente identificadas em alguns
grupos, de modo a garantir uniformidade nos relatórios. Candeias já vem medindo este
indicador desde 2003.
- Ganho dinheiro x dia (US$) – refere-se a uma medida de valor referente a atraso de
entrega de produto. O cálculo é baseado no valor de venda, em dólares, do pedido
multiplicado pelos dias de atraso. Esse indicador é recomendado por Goldratt (2001, v.1).
Candeias já vem utilizando desde 2003 e deve ser estabelecida meta a partir de 2005.
- Velocidade do Portão de entrada até o gargalo e gerenciamento de pulmão – deve ser
reportado em gráfico estatístico de processo por família de produto e por área. Esse indicador
tem a finalidade de informar a estabilidade, variabilidade e melhorias das operações. Cada
família de produto terá medido o lead time da matéria-prima ao estoque de verde; do WIP (de
cozimento ao estoque de grafitado); e do estoque de grafitado ao estoque de expedição. O
lead time por ordem será medido e plotado no gráfico estatístico de controle, para se verificar
as causas comuns e especiais. Gráfico de Pareto com essas causas deve ser aplicado na busca
da redução de variabilidade do processo, estabilidade e melhoria contínua. Esse controle ainda
não foi implementado em Candeias.
95
- Gerenciamento dos Pulmões – os pulmões de expedição e do RRC devem ser
medidos em relação às zonas verde, amarelo e vermelha. Também devem ser utilizados
gráficos estatísticos de controle de processo com aplicação posterior de Gráfico de Pareto para
análise das causas dos problemas. Candeias ainda não implementou este controle, porém o
Drummer possui ferramenta e relatório para essa análise.
- Estoque de segurança – refere-se ao estoque do Supermercado e deve ser comparado
com o estoque definido por vendas/marketing (de acordo com o estudo da demanda e a
definição dos produtos MTS e suas respectivas quantidades). Esses targets ainda não foram
definidos pelo pessoal de vendas/marketing.
Outros indicadores, não listados pela Corporação, continuam sendo medidos e
reportados e se encontram na tabela de indicadores de performance, já apresentada.
Podemos citar como impactos positivos nos resultados o aumento do giro de estoque
em 9% (base 2000 em relação a 2004) associado a uma melhoria das entregas. Em 2002, os
altos giros de estoque com os baixos inventários de grafite prejudicaram em demasia as datas
de entrega, o que significa que os estoque de grafite estavam bem abaixo do recomendado ou
nas dimensões não recomendadas.
Os inventários totais em relação às vendas caíram a partir de 2001 em 8%. Essa queda
se deu, principalmente, em produtos grafitados, sem prejudicar as datas de entrega se
comparadas ao ano de 2004.
As datas de entrega, apesar de apresentarem uma tendência de melhoria nos últimos 2
anos ainda não são suficientes. É projetado o atendimento aos pedidos de eletrodos em 98%
das datas acordadas e 100% dos pedidos de catodos.
O refugo de eletrodo elevou-se e isto era de se esperar no início deste processo. No
passado, com inventários muito altos, todo e qualquer produto suspeito era seguro no processo
e passado para trás por produtos ditos aprovados. A política de baixo inventário e de busca de
causa de problemas tão logo identificados faz com que emirjam os refugos, antes escondidos
no inventário. Outro ponto que também contribuiu para o aumento do refugo foi a operação a
plena capacidade, com lotes de tamanhos cada vez mais reduzidos. Esse aprendizado aumenta
a velocidade de reação da operação, mas o aumento do número de preparações e ajustes nos
processos tende a aumentar o índice de refugo.
Por último, outro ponto muito forte da metodologia, está relacionada com a velocidade
de resposta da produção, principalmente quando há um incremento no nível operacional, e
isto está muito ligado ao foco que é dado no gargalo; afinal de contas é ele quem dita o ritmo.
96
O ganho dinheiro versus dia indicador proposto por Goldratt (2001, v.1, 2) ainda está
em fase de assimilação e aprendizagem na organização, tendo sido reportada alguma
dificuldade quando da tentativa de se estabelecer uma meta. Idealmente, sabemos ser esta
meta zero, porém, na idéia de se ter este indicador como remunerador de desempenho, foram
apontadas dificuldades para estabelecer um valor considerado lógico.
Utilização do gargalo passou a ser medida, mundialmente, por semana, e tem sido uma
ferramenta constante de foco e informação das operações de todas as plantas. Reuniões
semanais com o mais alto nível da administração para discutir todas as operações com base
neste indicador têm se mostrado bastante positivas.
Outros pontos positivos da implantação desta metodologia estão relacionados com a
diminuição de atritos entre as diversas áreas, com uma grande colaboração de todos para com
o departamento gargalo. Também notamos um melhor direcionamento de foco em toda a
companhia, já que as restrições são conhecidas e as discussões são sempre trazidas à luz dos
novos conceitos, questionando as práticas anteriores, de modo a executar sempre o que fizer
mais sentido e for mais lógico.
Também foram percebidas algumas desvantagens: acréscimo substancial das DGF’s
(despesas gerais de fabricação) no gargalo. Por ser o gargalo, há uma certa facilidade na
liberação se recursos, permitindo, por vezes, gastos desnecessários; o aumento do refugo, já
mencionado acima; às vezes, os departamentos não gargalo se sentem desprestigiados,
ficando com a idéia de menor valor e de que a direção não está se importando com sua
performance; existência de conflito entre a contabilidade de ganho e a contabilidade de custos
– o custo por tonelada ainda impacta em várias decisões.
4.2 APLICAÇÃO DO MODELO TPC NA PLANTA DE MONTERREY
A implantação do método TPC na planta de Monterrey teve início na segunda metade
do ano 2001. O projeto foi liderado pelo Gerente de Projetos, que participou de toda a
implementação do método na planta de Candeias. Fizeram parte da equipe o Gerente de
Logística e o Gerente de Marketing. Também foi utilizada consultoria externa da Avraham
Goldratt Institute.
Importante mencionar que, ao longo de 2002, foi decidida a ampliação da fábrica para
60.000/ano, o que faz dessa unidade a maior fábrica de eletrodos de grafite do mundo. Como
97
veremos adiante, apesar dos conhecimentos adquiridos com a nova metodologia, a ampliação
ainda manteve a fábrica com capacidades bastante balanceadas em alguns departamentos,
permitindo a ocorrência de restrições interativas, o que gera períodos de turbulência na operação.
Outro ponto importante é que apenas 30% da produção de Monterrey se destinam a
vendas diretas a clientes. Os 70% restantes são constituídos de vendas intercompanhia.
A metodologia de implementação teve como principais passos:
- Treinamento de 1 dia com os consultores externos sobre os princípios básicos do
TPC para o time de implementação e todos os gerentes da planta (30 pessoas).
- Treinamento de 3 dias, envolvendo os consultores externos, com o time de
implementação e todos os gerentes da planta para construção do fluxograma de modelagem
TPC a ser implementado em Monterrey.
- Treinamento de 2 dias para todos os técnicos e supervisores da planta. Esse time,
juntamente com o time de implementação, constituíram-se nos multiplicadores do processo
para 100% do restante da fábrica.
A modelagem final seguiu modelo idêntico ao de Clarksville, tendo a Grafitação como
RRC e o Cozimento como RRE. Além disso, todo o sistema de informação e programação de
produção de Clarksville e de Monterrey eram praticamente idênticos, o que permitiu a
utilização de muitos trabalhos desenvolvidos no projeto-piloto.
4.2.1 Problemas na Implementação
a) Resistência a Mudança
Foi detectado um nível muito baixo de resistência a mudança. Isto foi atribuído, em
primeiro lugar, às poucas mudanças em relação a como a fábrica vinha operando e ao
estabelecimento de níveis de operação bem definidos para os departamentos de MME,
Cozimento e Grafitação, o que não permitia competição maior entre os departamentos. Além
disso, a boa aceitação da metodologia foi creditada a sua lógica e à visão muito clara de ser
uma exigência da Corporação para com todas as plantas.
b) Sistema de Informação e Software
Monterrey utiliza o sistema MAC-PAC que opera o MRP II, elabora o plano mestre de
produção e controla os targets do sistema de reposição, enviando o sinal para a geração de
98
novas ordens de produção. Os pedidos de venda dão entrada no sistema denominado de
T*ReCS. Este sistema é conhecido dento da empresa como pipeline e foi o mesmo utilizado
no desenvolvimento do projeto piloto de Clarksvillle. Todas as demais necessidades do
planejamento e controle da produção são trabalhadas em planilhas excel.
c) Identificação das Restrições
Não houve dificuldade na identificação das restrições, visto que o modelo-piloto de
Clarksville já era do conhecimento de todos os membros da implementação do projeto e se
aplicava integralmente na planta de Monterrey.
Os conflitos em relação à identificação da restrição foram ocorrendo durante o período
de ampliação da planta, porém foi decidido manter o Cozimento como o RRE durante todo
esse período.
Todas as ferramentas de JIT mencionadas neste trabalho (ex.: SMED, TPM, CQT, e
CEP), adicionadas a todas as ferramentas de exploração visualizadas, foram colocadas em
prática ao longo do período de ampliação, nas áreas onde os problemas se apresentavam. Isto
gerou um período de grande turbulência na operação, refletidos no nível de operação do
Cozimento e respectivas vendas, como mostrado no Quadro 3, a seguir:
MONTERREY
PRODUÇÃO (T X 1000)
VENDAS
ANO
COZIMENTO
TOTAIS
2001
38,0
37,4
2002
48,0
45,6
2003
57,8
57,9
2004
58,2
62,9
QUADRO 3 - PRODUÇÃO DO RRE X VENDAS TOTAIS7
As capacidades dos diversos departamentos, durante o período de 2001 a 2004, estão
mostradas no quadro a seguir:
7
É possível que além de inventário existente, possa ter havido alguma importação inter-companhia, não sendo o
total das vendas necessariamente produzido em Monterrrey.
99
MONTERREY
CAPACIDADE (TX1000)
ANO
MME COZIMENTO IMPREGNAÇÃO RECOZIMENTO GRAFITAÇÃO USINAGEM
2001
48
56
70
56
44
85
2002
51
58
70
58
51
85
2003
62
60
70
60
60
85
2004
65
62
70
62
63
85
QUADRO 4 - CAPACIDADE (EQUIVALENTE AO PESO USINADO) POR DEPARTAMENTO
d) Estrutura Organizacional
Por motivo das turbulências causadas pelas restrições interativas durante o processo de
ampliação, decidiu-se por uma mudança organizacional. Os Gerentes de Processo/Produção,
que respondiam pela produção e manutenção de seus departamentos, passaram a se dedicar
exclusivamente à produção e implementação do TPC, e a manutenção foi centralizada em
apenas um departamento.
e) Capacidade Protetiva
A capacidade restritiva de Monterrey são as operações de Cozimento/Recozimento, já
que ambas utilizam os mesmos recursos (fornos) e o aumento de uma implica na direta
redução da outra.
TABELA 3 - ANÁLISE DE CAPACIDADE PROTETIVA EM RELAÇÃO A RESTRIÇÃO (MONTERREY)
% COZIMENTO MME
Dec. 2004
106%
COZIMENTO IMPREGNAÇÃO RECOZIMENTO GRAFITAÇÃO
-
113,3%
-
101,1%
USINAGEM
137,5%
As capacidades protetivas de MME e Grafitação estão abaixo do recomendado – 10 a
15%. Isto significa que existe o risco muito grande de flutuação do gargalo, numa quebra
inesperada de Grafitação, como demonstrado no quadro a seguir:
100
TABELA 4 - ANÁLISE DE CAPACIDADE PROTETIVA – IMPACTO DE QUEBRA INESPERADA
CAPACIDADE
MONTERREY
CAPACIDADE 2 DIAS PERDIDOS CAPACIDADE PROTETIVA
Nº DE DIAS
CAPACIDADE
TX1000/DIA
PRODUÇÃO
PROTETIVA
DISPONÍVEL
P/ RECUPERAR
Dez. 2004
tx1000/ano
@100%
grafitação
%
tx1000/dia
dias perdidos
MME
65,5
181,9
343,3
6,0
10,9
31
Cozimento
61,8
171,7
-
-
-
-
Impregnação
70,0
194,4
343,3
13,3
25,9
13
Grafitação
62,5
173,6
343,3
1,1
1,9
180
A tabela acima mostra que, caso a grafitação quebre por 2 dias, mantida a operação do
cozimento a 100%, o gargalo será movido para a grafitação pelos próximos seis meses. Isto
mostra a necessidade de explorar/elevar a grafitação e o MME de modo a atender a
recomendação de se ter 10 a 15% acima de capacidade protetiva ou, conforme Goldratt (2001,
v.1), deveríamos limitar a produção do cozimento (e vendas) a 54000 e 56000/ano, o que
garantiria a capacidade protetiva necessária nos demais departamentos.
f) Programação da Restrição
Monterrey não está operando com o sistema de supermercado proposto no modelopiloto. Está utilizando um sistema parecido com o de Candeias. Clarksville (70% das vendas
de Monterrey) olha os pedidos e a previsão de vendas de dois meses adiante e, baseado nos
estoques existentes e num estoque de segurança, estima e sugere a programação dos fornos de
cozimento. Esta sugestão de carregamento de fornos do mês é verificada pelo pessoal de
planejamento e programação de produção de Monterrey, que autoriza as ordens de produção
no cozimento após alguns ajustes. A partir do carregamento do forno, esse material segue o
fluxo até a grafitação, de acordo com o método de empurrar, e não como o proposto, de ser
puxado pelas vendas.
g) Demanda MTO e MTS
É consenso que a unidade central de planejamento global e vendas/marketing mundial
deve definir os produtos MTO e MTS, bem como o Pulmão Expedição para todas as plantas
passarem a produzir conforme o modelo proposto de TPC com supermercado.
101
h) Gerenciamento dos Pulmões
Monterrey também não está aplicando a ferramenta do gerenciamento de pulmões,
sendo recomendada a aplicação desta técnica no MME (Pulmão da restrição), no WIP (do
forno de cozimento ao supermercado da grafitação) e na Expedição (do supermercado ao
embarque).
i) Redução de Variabilidade e Estabilidade de Processo
No questionário de auto-avaliação destinado à Corporação, Monterrey informou não
estar totalmente implementado, com base no Decalogue, apenas o item 3 (Estabilize o
sistema) e o item 6 (Reduza a variabilidade da restrição e dos principais processos). Estes
itens apresentaram índices de cumprimento 9 e 8, respectivamente. Verificamos, entretanto,
que itens dados como implementados, a exemplo do gerenciamento de pulmões, não atende
aos critérios do método TPC.
j) Fluxo de Produtos nas Não-Restrições
O critério adotado para priorizar o fluxo nas não restrições foi o PEPS. Entretanto, foi
reportado pelo gerente do projeto uma dificuldade muito grande em cumprir esse
procedimento, em razão dos leiautes das instalações não serem apropriados para tal
procedimento. A partir daí, eles têm priorizado o fluxo dos recursos não restritivos pelo
número das ordens de produção.
4.2.2 Indicadores de performance
Durante o período da ampliação, os indicadores foram muito prejudicados. Daí termos
nos concentrado nos anos de 2003 e 2004, quando a planta já operava próximo à capacidade
planejada pela Corporação. A Tabela 5, a seguir, é ilustrativa:
102
TABELA 5 – INDICADORES DE PERFORMANCE
DA PLANTA DE MONTERREY
INDICADOR
ANO
2001
2002
2003
2004
-
-
3,5
3,9
Clientes diretos
-
-
90,5
97,5
Inter-companhia
-
-
15,3
47,2
Lead-time (dias)
57
64
77
72
Refugo (%)
4,5
3,6
3,5
2,6
-
-
14,2
2,5
-
-
75,2
97,6
Giro de Estoque
% entrega na data
Ganho direitoxdia
(MUS$x1000)
% utilização do
Gargalo
Podemos citar como impactos positivos nos resultados o aumento do giro de estoque
em 11% (base 2003 em relação a 2004) associado a uma melhoria das entregas. As entregas
intercompanhia em 2003 chegaram a um dos piores índices já vistos.
O lead time tem piorado ano a ano, e isto se deve à mudança de prioridades e desvio
de produtos originalmente produzidos para atender a um pedido e embarcado para outro. É
esperado, com a estabilização da produção e a implementação do gerenciamento de pulmões e
supermercado, que o lead time volte a patamares de 57 a 60 dias.
O refugo de eletrodo, estranhamente, caiu. Em situações como estas, de ampliação de
produção, baixos níveis de inventário e atrasos na entrega, é esperado um aumento de refugo.
O ganho dinheiro versus dia, indicador proposto por Goldratt (2001, v.1 e 2), ainda
está em fase de assimilação e aprendizagem na organização. Monterrey tem reportado apenas
os valores referentes às vendas diretas a cliente, que apresentaram uma melhoria significativa
de 2003 para 2004, em linha com a melhoria apresentada com as datas das entregas.
O percentual de utilização do gargalo melhorou sensivelmente, permitindo o aumento
real das vendas e a melhoria das datas de entrega.
Os mesmos pontos negativos encontrados na implantação do método na planta de
Candeias se aplicam à planta de Monterrey. O estudo da demanda (MTS x MTO) é mais
crítico para a planta de Monterrey por esta ter 70% de suas vendas voltadas para exportação
intracompanhia enquanto, para Candeias, este percentual cai para 15%.
Monterrey tem planos de seguir os indicadores sugeridos pela Corporação.
CONSIDERAÇÕES FINAIS
Verificamos que a utilização do método TPC com Supermercado e gerenciamento de
pulmão, no planejamento e programação da produção, coloca a Graftech em posição de
vanguarda na gestão da manufatura. Este método, associado ao uso das ferramentas de
planejamento do MRP II e das ferramentas de JIT e GQT para melhoria contínua dos
processos, forma um potente modelo de gestão.
Houve um aumento significativo no volume das vendas, tanto na unidade de Candeias
como na unidade de Monterrey, permitido pelos níveis de produção alcançados pelo gargalos,
aplicando sistematicamente os passos 1, 2 e 3 do TPC (identificação, exploração e
subordinação), associado às técnicas de JIT (SMED, lotes reduzidos, eliminação causa de
refugo e TPM). Também verificamos uma melhora no desempenho das datas de entrega,
diminuição dos estoques, refletida no aumento do giro, e uma diminuição dos problemas do
dia-a-dia. O lead time apresentou uma queda inicial e voltou a subir com o aumento do
volume de vendas, principalmente pela utilização, ainda, da previsão de vendas como
ferramenta de priorização de ordens de produção. Isto era esperado, já que continuamos a
empurrar a produção contra uma previsão, ao invés de ter uma produção puxada por uma
demanda ou solicitação de reabastecimento (Supermercado).
Embora as plantas tenham atingido um patamar superior de desempenho de produção,
ainda não podemos considerar o modelo-piloto implementado. Acreditamos que ainda existe
um alto potencial de melhorias com o uso do TPC. Os pontos correspondentes a essas
melhorias são a implementação do Supermercado e o gerenciamento de pulmões com vistas a
um aprimoramento contínuo. Implantadas essas duas ferramentas, teremos o modelo,
conforme proposto, operando nas duas unidades.
Dois pontos nos chamam a atenção e, a nosso ver, requerem uma ação da Corporação.
Eles são: as capacidades dos departamentos de produção ainda bastante balanceadas; e a
subordinação das prioridades das ordens de produção baseadas em previsões de vendas.
Em relação ao primeiro, Goldratt (1992, p.25, tradução nossa) é enfático: “Alex você
sabe muito bem que para ser eficiente, supõe-se que as linhas não têm capacidades
104
balanceadas [...] Deixe-me relembrar você, o impacto das flutuações estatísticas associadas
com recursos dependentes.”39 Uma solução para este conflito é sugerida pelo próprio Goldratt
(2001, v.1): ao invés de estar sempre contando com a elevação dos departamentos para gerar o
desbalanceamento, o que leva, às vezes, algum tempo, pode-se limitar as vendas do RRC ao
necessário, para criar o desbalanceamento desejado. Esta opção é imediata, requerendo apenas
uma decisão gerencial.
A subordinação das prioridades das ordens de produção em relação às previsões de
vendas nos parece um conflito que deve ser tratado com a alta administração, envolvendo as
áreas de Operações e Vendas. Smith (2000) atesta que a maioria dos projetos de
implementação do TPC falham devido ao passo 3 - subordinação. Neste caso, identificamos
uma restrição não física atrelada ao referido passo, a qual nos limitamos a traçar no diagrama
én
ec
es
s
ári
oB
de conflito genérico, que sugerimos ser tratado pelo time mencionado anteriormente.
Para ter B é necessário D
B
D
Pa
ra
ter
A
A
PRIORIZAR AS ORDENS DE
PRODUÇÃO CONFORME DATAS
DOS PEDIDOS COLOCADOS
OU REABASTECIMENTO
MAXIMIZAR O RETORNO
SOBRE O INVESTIMENTO
A
ter
ra
Pa
D’
C
s
es
ec
én
MAXIMIZAR O FLUXO
DE CAIXA
PRIORIZAR AS ORDENS DE
PRODUÇÃO CONFORME DATAS
DA PREVISÃO DE VENDAS
D está em conflito direto com D’
SUBORDINAR TUDO ÀS
PROGRAMAÇÕES DE
EMBARQUE E DO TAMBOR
C
io
ár
Para ter C é necessário D’
1
DIAGRAMA 2 - CONFLITO PARA ESTABELECIMENTO DAS ORDENS DE PRODUÇÃO
O diagrama acima mostra que:
39
“Alex you know very well that, to be efficient, lines are not supposed to be capacity balanced [...] Let me
remind you, the impact of statistical flutuations coupled with dependent resources.”
105
a) para a Operação maximizar o retorno sobre o investimento (meta) é necessário
subordinar todos os recursos às programações de embarque e do RRC; para a Operação
subordinar todos os recursos às programações de embarque e do RRC é necessário priorizar
as ordens de produção conforme as datas dos pedidos em carteira ou dos pedidos de
reabastecimento emitidos pelo Supermercado;
b) para Vendas maximizar o retorno sobre o investimento (meta), é necessário
maximizar o fluxo de caixa; e para Vendas maximizar o fluxo de caixa, é necessário priorizar
as ordens de produção conforme as datas da previsão de vendas.
O conflito acima precisa ser solucionado de modo a se instituir definitivamente os
Supermercados e a produção puxada pela demanda. A princípio, supúnhamos a existência de
um problema de restrição física. Porém, após uma análise mais aprofundada, notamos que,
apesar dos volumes de vendas cada vez mais altos e próximos da produção do RRC, sempre
há um inventário de grafite disponível não vendido. Entretanto este inventário é formado a
partir da inacuracidade da previsão de vendas, quando poderia ser formado a partir de estudos
de demanda determinando os Supermercados. A solução aparentemente simples para este
conflito envolve políticas ligadas principalmente a metas trimestrais de volume e antecipações
de vendas. Por outro lado, sabemos que estas políticas, quando não atreladas a um aumento
da fatia de mercado, são apenas uma ilusão.
Ainda com vistas a um aprimoramento contínuo do método TPC na organização,
temos as seguintes recomendações:
- elaborar treinamento específico sobre gerenciamento de pulmões e implementação de
Supermercado com os times de produção e vendas das diversas plantas;
- acompanhamento centralizado de líder responsável da Corporação na implementação
desses dois itens, de modo a garantir consistência e uniformidade na implementação dessas
técnicas;
- intensificar as Visitas de Avaliação, por ter tido resultado bastante positivo, sendo
este um bom caminho para acompanhar a implementação do item 2;
- eliminação do Relatório Mensal de Auto-Avaliação da Graftech Ltd., por planta, que
nos pareceu distorcer a realidade e pode gerar comparação distorcida entre as plantas;
- rever a proposta da medição de lead time e gerenciamento de pulmão feita pela
Corporação, por parecer muito avançada em pontos que ainda hoje apresentam dificuldades
de implementação. Sugiro iniciarmos com um método simples de acompanhamento da Zona
I, Zona II e Zona III, registrando os furos dos pulmões e fazendo Pareto das respectivas
106
causas. Depois de assimilado o método, podemos ser mais agressivos. Em projeto,
costumamos dizer que o ótimo é inimigo do bom;
- também sugerimos que todos os indicadores emitidos pelas plantas para a
Corporação, que são compilados e devolvidos com os resultados individuais, sejam
trabalhados de modo a apresentar o resultado global do indicador. Isto permite verificar se a
organização como um todo está no caminho do aprimoramento contínuo. Desta forma,
podemos estabelecer metas para a corporação, haja vista que o mix produzido por cada planta
impacta significativamente em vários destes indicadores e não é uma escolha individual.
Por último, vale a pena ressaltar o impacto positivo decorrente do uso de uma
linguagem bem uniforme em todas as plantas e na Corporação, em relação à gestão da
manufatura; validar também os ganhos obtidos com as ferramentas de JIT, na exploração dos
gargalos e na elevação de não gargalos para desbalancear as plantas; e reconhecer o bom nível
de entendimento teórico de todos os envolvidos na implementação desta metodologia,
demonstrando que a estratégia de treinamento foi bem desenvolvida.
REFERÊNCIAS
CORBETT, Thomas N. Contabilidade de ganhos. A nova contabilidade gerencial de acordo
com a Teoria das Restrições. São Paulo: Nobel, 1997.
COX, J.F.; BLACKSTONE, J.H.; SPENCER, M.S. APICS Dictionary. Falls Church, VA:
American Production and Inventory Control Society, 1985.
COX III, James F.; SPENCER, Michael S. Manual da Teoria das Restrições. São Paulo:
Bookman, 2002.
DEMING, Edwards W. Out of the crisis. Massachusetts: Institute of Technology, 1986.
FORD, Henry. My life and work (1922). Contrib. by Samuel Crowther. Garden City, NY:
Published by Doubleday, 2000.
______. Today and tomorrow. Colaboração Samuel Crowther. New York: Productivity
Press, 2003.
FULLMANN, Claudiney et al. MRP, MRP II, MRP III (MRP+JIT/KANBAN), OPT e
GDR. São Paulo: IMAM, 1989.
GOLDRATT, Eliyahu M. The haystack syndrome. Great Barrington, MA: The North River
Press, 1990.
______. Late night discussions on the theory of constraints. Great Barrington, MA: North
River Press, 1992.
______. It’s not luck. Great Barrington, MA: North River Press, 1994.
______. The theory of constraints: a systems approach to continuous improvement. Delmar,
Albany, NY: Hardcover, 1995. Citado por STEIN, Robert E. The Theory of Constraints.
Applications in quality and manufacturing. NewYork: Marcel Dekker Inc., 1997.
______. Critical chain. Great Barrigton, MA: North River Press, 1997.
______. Theory of the constraint – a self learning program. USA, Oxfordshire, OX49 5ST
United A possible dem and pull scenario. KingdomGoldratt’s Marketing Group, 2001. V.1-7.
______; COX, Jeff. A meta. São Paulo: Educator, 1997.
108
______; FOX, Robert E. A corrida pela vantagem competitiva. São Paulo: IMAM, 1989.
LEPORE, Domenico; COHEN, Oded. The Decalogue: the Theory of Constraints and the
system of profound knowledge. Great Barrington, MA: North River Press, 1999.
LEI DE MURPHY. Disponível em:
<http://www.facom.ufba.br/com024/Murphya/Murphy.htm> Acesso em: 23 maio 2005.
OHNO, Taiichi. Sistema toyota de produção, além da produção em larga escala. Porto
Alegre: Bookman, 1997.
PATTON, M.Q. Qualitative evaluation and research methods. 2.ed. Newbury Park, CA:
Sage Publications, Inc., 1990. Citado por COX III, James F.; SPENCER, Michael S. Manual
da Teoria das Restrições. São Paulo: Bookman, 2002.
ROESCH, Sylvia Maria Azevedo. Projetos de estágio e de pesquisa em administração:
guia para estágios, trabalhos de conclusão, dissertações e estudos de caso. 2. ed. São Paulo:
Atlas, 1999.
SCHONBERGER, Richard J. Técnicas industriais japonesas: nove lições ocultas sobre a
simplicidade. São Paulo: Pioneira, 1984.
SMITH, Debra A. The measurements nightmare: how the theory of constraints can resolve
conflicting strategies, policies, and measures. Alexandria, VA: APICS - The Association for
Operations Management, 2000. (APICS Series on Constraints Management).
STAKE, R. Case Studies. In: DENZIN, N.; LINCOLN, Y. (Eds.). Handbook of qualitative
research. Thousand Oaks: Sage, 1994. Citado por ROESCH, Sylvia Maria Azevedo.
Projetos de estágio e de pesquisa em administração: guia para estágios, trabalhos de
conclusão, dissertações e estudos de caso. 2. ed. São Paulo: Atlas, 1999.
STEIN, Robert E. The Theory of Constraints. Applications in quality and manufacturing.
NewYork: Marcel Dekker Inc., 1997.
YIN, Robert K. Case study research: design and methods. Londres: Sage, 1994. Citado por
ROESCH, Sylvia Maria Azevedo. Projetos de estágio e de pesquisa em administração:
guia para estágios, trabalhos de conclusão, dissertações e estudos de caso. 2. ed. São Paulo:
Atlas, 1999.
WIGHT, Oliver. Production and inventory in the computer age. New York, NY: Van
Nostrand Reinhold, 1984.
WOMACK, James, P.; JONES, Daniel T. A mentalidade enxuta das empresas. Elimine o
desperdício e crie riquezas. Rio de Janeiro: Campus, 1998.
ANEXOS
ANEXO A - MODELO DAS INSTRUÇÕES PARA PREENCHIMENTO DO
RELATÓRIO MENSAL – GRAFTECH INTERNATIONAL LTD.1
1. ESTABELEÇA A META
Avaliação
Análise da performance
Desenvolva a ARA, DDN, ARF, APR e AT.
Desenvolva lista das injeções chaves (4 a 5 injeções).
Desenvolva os planos para implementação das injeções.
Medidas
Ganho dinheiro/dia.
2. ENTENDA O SISTEMA
Análise dos Processos
Calcule as capacidades.
Entenda as restrições.
Calcule os lead-times (tempo de processamento).
3. ESTABILIZE O SISTEMA
Análise dos Processos
Estabeleça gráficos de controle baseados nas saídas de cada processo.
Analise os gráficos de controle.
Desenvolva processo para buscar estabilidade.
4. IDENTIFIQUE O GARGALO E EXECUTE O PROCESSO DE FOCALIZAÇÃO DAS 5 ETAPAS DO TPC
Análise dos Processos
Identifique a restrição do sistema.
Explore a restrição do sistema.
Subordine tudo o mais à restrição do sistema.
Eleve a restrição do sistema.
Calcule a capacidade de proteção.
Desbalanceie a planta / Proveja capacidade de proteção.
1
Documento original elaborado em inglês. O texto que constitui este anexo é uma tradução feita por mim.
111
5. IMPLEMENTE O GERENCIAMENTO DO PULMÃO
Análise dos Processos
Calcule os tamanhos dos pulmões de expedição e do gargalo por medida de produto.
Verifique o cálculo dos pulmões – medida por medida.
Transição para os novos pulmões – Ajuste o nível de inventário – medida por medida.
Desenhe o sistema de sinal:
Para o sistema “J.D.Edwards”.
Para planilhas de Excel.
Para outros.
Implemente o sistema de sinal (incluindo treinamento).
Desenhe o Sistema de Gerenciamento de Pulmão – responsabilidades, relatórios, identificação
dos “buracos”.
Implemente o Sistema de Gerenciamento de Pulmões.
Implemente um sistema de ações corretivas e follow-up.
6. REDUZA A VARIABILIDADE DA RESTRIÇÃO E DOS PRINCIPAIS PROCESSOS
Análise dos Processos
Analise a variabilidade de processo
Desenvolva processo para reduzir variabilidade
7. CRIE UMA ESTRUTURA DE GERENCIAMENTO ADEQUADO
Análise dos Processos
Mude a estrutura de gerenciamento para suportar o TOC (Teoria das Restrições).
Mova para uma organização sistêmica
8. ELIMINE A RESTRIÇÃO EXTERNA; VENDA O EXCESSO DE CAPACIDADE
Análise dos Processos
Segmente o mercado.
Desenvolva planos de Vendas e Marketing.
Desenvolva uma oferta “irrecusável”.
9. TRAGA A RESTRIÇÃO PARA DENTRO DA ORGANIZAÇÃO
Análise dos Processos
Identifique a restrição externa – política etc.
112
Desenvolva planos para trazer a restrição para dentro da organização.
Implemente os planos.
10. ESTABELEÇA UM PROGRAMA DE APRENDIZAGEM CONTÍNUA
Análise dos Processos
Necessidades de treinamento são desenvolvidas por função.
Existe um cronograma de treinamento.
Fly UP